1021. Deepest Root (25)

时间限制
1500 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent
nodes' numbers.

Output Specification:

For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components
in the graph.

Sample Input 1:

5
1 2
1 3
1 4
2 5

Sample Output 1:

3
4
5

Sample Input 2:

5
1 3
1 4
2 5
3 4

Sample Output 2:

Error: 2 components

先求连通块,通过并查集,

然后枚举每一个点dfs,

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <algorithm>
#include <vector> using namespace std;
const int maxn=1e4;
int n;
struct Node
{
int value;
int next;
}edge[maxn*2+5];
int father[maxn+5];
int head[maxn+5];
int vis[maxn+5];
int num[maxn+5];
int tag[maxn+5];
int tot,cnt;
void add(int x,int y)
{
edge[tot].value=y;
edge[tot].next=head[x];
head[x]=tot++;
}
int find(int x)
{
if(father[x]!=x)
father[x]=find(father[x]);
return father[x];
}
void dfs(int root,int deep)
{
vis[root]=1;
int tag=0;
for(int i=head[root];i!=-1;i=edge[i].next)
{
int y=edge[i].value;
if(!vis[y])
{
tag=1;
dfs(y,deep+1);
}
}
if(!tag)
num[cnt]=max(num[cnt],deep);
}
int main()
{
scanf("%d",&n);
int x,y;
memset(head,-1,sizeof(head));
for(int i=1;i<=n;i++)
father[i]=i;
tot=0;
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
int fx=find(x);
int fy=find(y);
if(fx!=fy)
father[fx]=fy;
add(x,y);
add(y,x);
}
memset(tag,0,sizeof(tag));
int res=0;
for(int i=1;i<=n;i++)
{
find(i);
tag[father[i]]=1;
}
for(int i=1;i<=n;i++)
if(tag[i])
res++;
if(res>1)
printf("Error: %d components\n",res);
else
{
for(int i=1;i<=n;i++)
{
memset(vis,0,sizeof(vis));
cnt=i;
dfs(i,0);
}
int ans=0;
for(int i=1;i<=cnt;i++)
ans=max(ans,num[i]);
for(int i=1;i<=cnt;i++)
if(num[i]==ans)
printf("%d\n",i);
}
return 0;
}

PAT 甲级 1021 Deepest Root (并查集,树的遍历)的更多相关文章

  1. PAT甲级1021. Deepest Root

    PAT甲级1021. Deepest Root 题意: 连接和非循环的图可以被认为是一棵树.树的高度取决于所选的根.现在你应该找到导致最高树的根.这样的根称为最深根. 输入规格: 每个输入文件包含一个 ...

  2. PAT 1021 Deepest Root[并查集、dfs][难]

    1021 Deepest Root (25)(25 分) A graph which is connected and acyclic can be considered a tree. The he ...

  3. PAT 甲级 1021 Deepest Root (25 分)(bfs求树高,又可能存在part数part>2的情况)

    1021 Deepest Root (25 分)   A graph which is connected and acyclic can be considered a tree. The heig ...

  4. 1021.Deepest Root (并查集+DFS树的深度)

    A graph which is connected and acyclic can be considered a tree. The height of the tree depends on t ...

  5. PAT 甲级 1021 Deepest Root

    https://pintia.cn/problem-sets/994805342720868352/problems/994805482919673856 A graph which is conne ...

  6. PAT甲级——1107 Social Clusters (并查集)

    本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90409731 1107 Social Clusters (30  ...

  7. PAT甲级——A1021 Deepest Root

    A graph which is connected and acyclic can be considered a tree. The height of the tree depends on t ...

  8. PAT甲题题解-1107. Social Clusters (30)-PAT甲级真题(并查集)

    题意:有n个人,每个人有k个爱好,如果两个人有某个爱好相同,他们就处于同一个集合.问总共有多少个集合,以及每个集合有多少人,并按从大到小输出. 很明显,采用并查集.vis[k]标记爱好k第一次出现的人 ...

  9. PAT甲级——1114 Family Property (并查集)

    此文章同步发布在我的CSDN上https://blog.csdn.net/weixin_44385565/article/details/89930332 1114 Family Property ( ...

随机推荐

  1. Js动态添加复选框Checkbox

    Js动态添加复选框Checkbox的实例方法!!! 首先,使用JS动态产生Checkbox可以采用如下类似的语句: var checkBox=document.createElement(" ...

  2. Decoration2:引入Angularjs显示前台一条数据

    SpringMVC内置的RestFul API格式采用的是最复杂最全面的HATEOAS规范,对于简单应用来说,前台解析起来不方便,我们下面主要想办法重新定义一种简单的RestFulAPI. (1)先是 ...

  3. C# 注册表修改 立即生效 [转]

    修改注册表后不重启计算机边生效. const int WM_SETTINGCHANGE = 0x001A; const int HWND_BROADCAST = 0xffff; IntPtr resu ...

  4. 使用padding和float处理带有间隙的多块布局

    . 每个间隙都是20px <div class="action-content pd10" style=""> <div class=&quo ...

  5. 关于Linux网卡调优之:RPS (Receive Packet Steering)

    昨天在查LVS调度均衡性问题时,最终确定是 persistence_timeout 参数会使用IP哈希.目的是为了保证长连接,即一定时间内访问到的是同一台机器.而我们内部系统,由于出口IP相对单一,所 ...

  6. Java中float/double取值范围与精度

    Java浮点数 浮点数结构 要说清楚Java浮点数的取值范围与其精度,必须先了解浮点数的表示方法,浮点数的结构组成,之所以会有这种所谓的结构,是因为机器只认识01,你想表示小数,你要机器认识小数点这个 ...

  7. keep learning

    fueling people’s creativity  助长了人们的创造力,燃烧了人们的激情

  8. kettle两表内链接的查询结果与sql语句的查询结果不符合?

    1.教师表输入 2.学生表 查 3.学生表中查出的教师id进行排序 5.教师表中查出的同样也对教师的id进行排序 6.进行左连接 总结: 进行连接的时候的关键是同样对教师的id进行先排序

  9. ContextLoader,ContextLoaderListener解读

    一.ServletContext 有 addListener(..) 方法,也有创建的方法 createListener(Class<T> c) . 有addFilter(..) 方法,也 ...

  10. SpringCloud架构设计

    最近一直在针对SpringCloud框架做项目,从中踩了不少的坑,也渐渐梳理出了一些内容,由于SpringCloud作为一个全家桶,其中东西太多,所以这时候就要有所取舍,这里就想把自己比较常用组件及架 ...