PAT 甲级 1021 Deepest Root (并查集,树的遍历)
1021. Deepest Root (25)
A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent
nodes' numbers.
Output Specification:
For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components
in the graph.
Sample Input 1:
5
1 2
1 3
1 4
2 5
Sample Output 1:
3
4
5
Sample Input 2:
5
1 3
1 4
2 5
3 4
Sample Output 2:
Error: 2 components
先求连通块,通过并查集,
然后枚举每一个点dfs,
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <algorithm>
#include <vector> using namespace std;
const int maxn=1e4;
int n;
struct Node
{
int value;
int next;
}edge[maxn*2+5];
int father[maxn+5];
int head[maxn+5];
int vis[maxn+5];
int num[maxn+5];
int tag[maxn+5];
int tot,cnt;
void add(int x,int y)
{
edge[tot].value=y;
edge[tot].next=head[x];
head[x]=tot++;
}
int find(int x)
{
if(father[x]!=x)
father[x]=find(father[x]);
return father[x];
}
void dfs(int root,int deep)
{
vis[root]=1;
int tag=0;
for(int i=head[root];i!=-1;i=edge[i].next)
{
int y=edge[i].value;
if(!vis[y])
{
tag=1;
dfs(y,deep+1);
}
}
if(!tag)
num[cnt]=max(num[cnt],deep);
}
int main()
{
scanf("%d",&n);
int x,y;
memset(head,-1,sizeof(head));
for(int i=1;i<=n;i++)
father[i]=i;
tot=0;
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
int fx=find(x);
int fy=find(y);
if(fx!=fy)
father[fx]=fy;
add(x,y);
add(y,x);
}
memset(tag,0,sizeof(tag));
int res=0;
for(int i=1;i<=n;i++)
{
find(i);
tag[father[i]]=1;
}
for(int i=1;i<=n;i++)
if(tag[i])
res++;
if(res>1)
printf("Error: %d components\n",res);
else
{
for(int i=1;i<=n;i++)
{
memset(vis,0,sizeof(vis));
cnt=i;
dfs(i,0);
}
int ans=0;
for(int i=1;i<=cnt;i++)
ans=max(ans,num[i]);
for(int i=1;i<=cnt;i++)
if(num[i]==ans)
printf("%d\n",i);
}
return 0;
}
PAT 甲级 1021 Deepest Root (并查集,树的遍历)的更多相关文章
- PAT甲级1021. Deepest Root
PAT甲级1021. Deepest Root 题意: 连接和非循环的图可以被认为是一棵树.树的高度取决于所选的根.现在你应该找到导致最高树的根.这样的根称为最深根. 输入规格: 每个输入文件包含一个 ...
- PAT 1021 Deepest Root[并查集、dfs][难]
1021 Deepest Root (25)(25 分) A graph which is connected and acyclic can be considered a tree. The he ...
- PAT 甲级 1021 Deepest Root (25 分)(bfs求树高,又可能存在part数part>2的情况)
1021 Deepest Root (25 分) A graph which is connected and acyclic can be considered a tree. The heig ...
- 1021.Deepest Root (并查集+DFS树的深度)
A graph which is connected and acyclic can be considered a tree. The height of the tree depends on t ...
- PAT 甲级 1021 Deepest Root
https://pintia.cn/problem-sets/994805342720868352/problems/994805482919673856 A graph which is conne ...
- PAT甲级——1107 Social Clusters (并查集)
本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90409731 1107 Social Clusters (30 ...
- PAT甲级——A1021 Deepest Root
A graph which is connected and acyclic can be considered a tree. The height of the tree depends on t ...
- PAT甲题题解-1107. Social Clusters (30)-PAT甲级真题(并查集)
题意:有n个人,每个人有k个爱好,如果两个人有某个爱好相同,他们就处于同一个集合.问总共有多少个集合,以及每个集合有多少人,并按从大到小输出. 很明显,采用并查集.vis[k]标记爱好k第一次出现的人 ...
- PAT甲级——1114 Family Property (并查集)
此文章同步发布在我的CSDN上https://blog.csdn.net/weixin_44385565/article/details/89930332 1114 Family Property ( ...
随机推荐
- CentOS6.x和CentOS7.X启动系统不显示进度条设置方法
[root@ok Desktop]# vi /boot/grub/grub.conf # grub.conf generated by anaconda # # Note that you do no ...
- Nginx的Rewrite正则表达式,匹配非某单词
Nginx的Rewrite正则表达式,匹配非某单词 由于要rewrite一个地址从 /mag/xx/xxx/ -> /m/xxx 但原先 /mag/xx/more/ 要保留 这就得写一个比较奇特 ...
- 匈牙利命名法、骆驼命名法、帕斯卡(pascal)命名法 C#命名规范
匈牙利命名法.骆驼命名法.帕斯卡(pascal)命名法 C#命名规范 一.匈牙利命名法:广泛应用于象Microsoft Windows这样的环境中. Windows 编程中用到的变量(还包括宏)的命名 ...
- Java反射机制在工厂模式中的应用
在本篇文章中就不详细介绍工厂模式,主要介绍一下反射在工厂模式中的使用,让读者对反射机制带来的好处有更深的认识. 首先看一下简单工厂模式 简单工厂模式(simple factory)是类的创建模式,又叫 ...
- ajax——实现三级联动下拉列表
数据库: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3 ...
- Linux上的free命令简介
每次使用free时都比较迷惑,对于上面的内容一直都不是很清楚,今天仔细查了以下,和大家一起分享以下: 先看一下free的运行结果: free打印出的内存信息主要分为两种,一种是安装的内存,一种是用磁盘 ...
- 004Maven_Pom.xml文档的介绍
很重要的一个文档,具体介绍如下:
- 001杰信-创建MyEclipse与maven项目
准备工作: 自己的私人仓库:
- Android开发人员必备的10个开发工具
工欲善其事,必先利其器,Android SDK 本身包含很多帮助开发人员设计.开发.测试和发布 Android 应用的工具,在本文中,我们将讨论 10 个最常用的工具. 1.Eclipse ADT E ...
- 小结:双连通分量 & 强连通分量 & 割点 & 割边
概要: 各种dfs时间戳..全是tarjan(或加上他的小伙伴)无限膜拜tarjan orzzzzzzzzz 技巧及注意: 强连通分量是有向图,双连通分量是无向图. 强连通分量找环时的决策和双连通的决 ...