poj2142 The Balance 扩展欧几里德的应用 稍微还是有点难度的
题目意思一开始没理解,原来是 给你重为a,b,的砝码 求测出 重量为d的砝码,a,b砝码可以无限量使用
开始时我列出来三个方程 :
a*x+b*y=d;
a*x-b*y=d;
b*y-ax=d;
傻眼了,可是我们知道 x,y前面的正负符号是不影响extgcd的使用的,比如poj1061 方程式是 px+qy=m,而 nefu84方程式是:px-qy=m;
所以不影响 只是方法没有想好,后来想到了 先令ax+by=1,求解出 x,y再乘以d不就可以了吗?
一开始 球ax+by=1时 我居然直接使用了 extgcd ,然后解出x0,y0,则x=x0*1/gcd值,可是这道题目的 a,b的gcd不一定为1,所以1/gcd会等于0,所以 这道题目一定要先求出a,b,的gcd值,然后 a/=gcd,b/=gcd,d/=gcd,这样 再求出x,y,的值 就不需要再乘以 1/gcd啦,好开心 感觉越做自信越高了
接下里 的话 题目 对于 x,y是有要求 的 要x+y尽量小,ax+by尽量小,你求出的 x,y中有可能的是有负的,那很正常,因为题目要求的是测出d的重量,所以 有可能是
:
a*x+b*y=d;
a*x-b*y=d;
b*y-ax=d;
但是 题目要求是正的 这时候 就是考验对扩展欧几里德了解程度了 下面贴出关于这部分的性质:
整数)
整数)
整数解。
先求出最小正解的x1然后利用式子 y1=(d-a*x1)/b;
然后 求出 最小正解 y2,然后利用式子x2=(d-b*y2)/a;
然后 比较 x1+y1 x2+y2的大小 取小的那一组
#include<iostream>
#include<cstdio>
#include<list>
#include<algorithm>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<cmath>
#include<memory.h>
#include<set> #define ll long long
#define LL __int64
#define eps 1e-8 const ll INF=9999999999999; #define M 400000100 #define inf 0xfffffff using namespace std; //vector<pair<int,int> > G;
//typedef pair<int,int> P;
//vector<pair<int,int>> ::iterator iter;
//
//map<ll,int>mp;
//map<ll,int>::iterator p;
//
//vector<int>G[30012]; ll GCD(ll a,ll b)
{
while(b)
{
ll r=b;
b=a%b;
a=r;
}
return a;
} ll extgcd(ll a,ll &x,ll b,ll &y)
{
if(b==0)
{
x=1;
y=0;
return a;
}
ll r=extgcd(b,x,a%b,y);
ll t=x;
x=y;
y=t-a/b*y;
return r;
} int main(void)
{
ll a,b,d;
while(cin>>a>>b>>d)
{
if(a+b+d == 0)
break;
ll x0,y0;
ll gcd=GCD(a,b);//这里要先求出 a,b的gcd值
a/=gcd;
b/=gcd;
d/=gcd;//都除以gcd
extgcd(a,x0,b,y0);
ll x=x0*d;
ll y=y0*d;//求出的 x0就不需要 乘以1/gcd 了,
ll x1=x,y1=y;
x1=(x%b+b)%b;//这里是假设不知道x,y的正负情况,求出x1的最小正解
y1=(d-x1*a)/b;//对应x1的y1最小正解
if(y1<0)
y1=0-y1;
ll x2=x,y2=y;
y2=(y2%a+a)%a;//这里是假设不知道x,y的正负情况,求出y2的最小正解
x2=(d-y2*b)/a;//对应x2的y1最小正解
if(x2<0)
x2=0-x2;
if(x1+y1 > x2+y2)//比较 x1+y1 x2+y2的大小
x=x2,y=y2;
else
x=x1,y=y1;
cout<<x<<" "<<y<<endl;
}
}
poj2142 The Balance 扩展欧几里德的应用 稍微还是有点难度的的更多相关文章
- POJ2142 The Balance (扩展欧几里德)
本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia The Balance 题目大意 你有一个天平(天平左右两边都可以放砝码)与重量为a,b(1<= ...
- POJ-2142 The Balance 扩展欧几里德(+绝对值和最小化)
题目链接:https://cn.vjudge.net/problem/POJ-2142 题意 自己看题吧,懒得解释 思路 第一部分就是扩展欧几里德 接下来是根据 $ x=x_0+kb', y=y_0- ...
- poj2142-The Balance(扩展欧几里德算法)
一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...
- POJ 2142 The Balance【扩展欧几里德】
题意:有两种类型的砝码,每种的砝码质量a和b给你,现在要求称出质量为c的物品,要求a的数量x和b的数量y最小,以及x+y的值最小. 用扩展欧几里德求ax+by=c,求出ax+by=1的一组通解,求出当 ...
- POJ2115 C Looooops 扩展欧几里德
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2115 题意 对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次 ...
- (扩展欧几里德算法)zzuoj 10402: C.机器人
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...
- [BZOJ1407][NOI2002]Savage(扩展欧几里德)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
- 51nod 1352 扩展欧几里德
给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别 ...
随机推荐
- Js数组的常用的方法概述
学习JS的同学们,也曾对数组进行学习掌握,所以我也把数组中常用的方法列举下来,相互学习 不多废话,直接上正文 . 快乐的分割线... 一.对象继承的方法 数组是一种特殊 ...
- jquery控制元素的显示与隐藏
比如要控制div的显示与隐藏,一句话就搞定了.$("#id").show()表示display:block,$("#id").hide()表示display:n ...
- 洛谷P1993 小K的农场 [差分约束系统]
题目传送门 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...
- Django Restframework 实践(一)
具备以下知识: django http://www.cnblogs.com/menkeyi/p/5882464.html http://www.cnblogs.com/menkeyi/p/588245 ...
- [转载]mac软件
效率之王:Afred小帽子:通过前人的配置,替代掉了 有道词典.发音工具.开关机.快速搜索.地图.Spotlight等应用. 主力编辑器:Atom因为高颜值.强大的插件和预览功能 取代了之前的subl ...
- Hibernate hql(hibernate query language)基础查询
在开发过程中,数据库的操作我们其实更多的用到的是查询功能,今天开始学习hql的查询. 1.加入必要的工具 2.Hibernate配备的一种非常强大的查询语言,这种查询语言看上去很像sql.但是不要被语 ...
- AtcoderGrandContest 005 F. Many Easy Problems
$ >AtcoderGrandContest \space 005 F. Many Easy Problems<$ 题目大意 : 有一棵大小为 \(n\) 的树,对于每一个 \(k \i ...
- BZOJ 3676: [Apio2014]回文串 回文树 回文自动机
http://www.lydsy.com/JudgeOnline/problem.php?id=3676 另一种更简单更快常数更小的写法,很神奇……背板子. #include<iostream& ...
- 字符约束条件的SQL注入攻击
引言 目前值得高兴的是,开发者在建立网站时,已经开始关注安全问题了——几乎每个开发者都知道SQL注入漏洞了.在本文中,我将为读者介绍另一种与SQL数据库相关的漏洞,虽然它的危害性与SQL注入不相上下, ...
- HDU 5291 Candy Distribution DP 差分 前缀和优化
Candy Distribution 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5291 Description WY has n kind of ...