欧拉函数 & 【POJ】2478 Farey Sequence & 【HDU】2824 The Euler function
http://poj.org/problem?id=2478
http://acm.hdu.edu.cn/showproblem.php?pid=2824
欧拉函数模板裸题,有两种方法求出所有的欧拉函数,一是筛法,而是白书上的筛法。
首先看欧拉函数的性质:
- 欧拉函数是求小于n且和n互质(包括1)的正整数的个数。记为φ(n)。
- 欧拉定理:若a与n互质,那么有a^φ(n) ≡ 1(mod n),经常用于求乘法逆元。
- 若p是一个质数,那么φ(p) = p-1,注意φ(1) = 1。
- 欧拉函数是积性函数:(wikipedia:http://zh.wikipedia.org/wiki/%E7%A9%8D%E6%80%A7%E5%87%BD%E6%95%B8)
- 若m与n互质,那么φ(nm) = φ(n) * φ(m)。
- 若n = p^k且p为质数,那么φ(n) = p^k - p^(k-1) = p^(k-1) * (p-1)。(证明还用说么。。。一共p^k能被p整除的就有p^(k-1)个。。所以总数减去即可。。
- 当n为奇数时,有φ(2*n) = φ(n)。
- $\sum_{d|n} \varphi (d) = n$,这个性质很重要!
基于素数筛的求欧拉函数的重要依据:
设a是n的质因数
若(n%a == 0 && (n/a)%a == 0) 则 φ(n) = φ(n/a)*a; (性质4的1和2推出,将n变成p1^a1*p2^a2...的形式,那么当前是a,即a^ax,那么根据φ(nm) = φ(n) * φ(m)先拆成m=a^ax,即φ(m)=a^(x-1)*(a-1),这样就是当a|m时乘上a-1,否则乘上a
若(n%a == 0 && (n/a)%a != 0) 则 φ(n) = φ(n/a)*φ(a)。(性质4的1推出)
素数筛:
poj 2478:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=1000005;
bool isnotprime[N];
int prime[N], phi[N], cnt;
void init() {
phi[1]=1;
for1(i, 2, N-1) {
if(!isnotprime[i]) prime[++cnt]=i, phi[i]=i-1;
for(int j=1; j<=cnt && i*prime[j]<N; ++j) {
isnotprime[i*prime[j]]=1;
if(i%prime[j]==0) { phi[i*prime[j]]=phi[i]*prime[j]; break; }
else phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
}
} int main() {
init(); int n;
while(n=getint(), n) {
long long ans=0;
for1(i, 2, n) ans+=phi[i];
printf("%lld\n", ans);
}
return 0;
}
hdu 2824:g++是I64d我也是醉了。。。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=3000015;
bool isnotprime[N];
int prime[N], phi[N], cnt;
void init() {
phi[1]=1;
for1(i, 2, N-1) {
if(!isnotprime[i]) prime[++cnt]=i, phi[i]=i-1;
for(int j=1; j<=cnt && i*prime[j]<=N-1; ++j) {
int p=prime[j];
isnotprime[i*p]=1;
if(i%p==0) { phi[i*p]=phi[i]*p; break; }
else phi[i*p]=phi[i]*phi[p];
}
}
} int main() {
int l, r; init();
while(~scanf("%d%d", &l, &r)) {
long long ans=0;
for1(i, l, r) ans+=phi[i];
printf("%I64d\n", ans);
}
return 0;
}
还有一种筛法,不需要求素数。。。有待研究。复杂度比前一种多了两个log,是nloglogn的。。。orz。还是用线性的素数筛吧。。
欧拉函数 & 【POJ】2478 Farey Sequence & 【HDU】2824 The Euler function的更多相关文章
- hdu 2824 The Euler function(欧拉函数)
题目链接:hdu 2824 The Euler function 题意: 让你求一段区间的欧拉函数值. 题解: 直接上板子. 推导过程: 定义:对于正整数n,φ(n)是小于或等于n的正整数中,与n互质 ...
- POJ 2478 Farey Sequence(欧拉函数前n项和)
A - Farey Sequence Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u ...
- poj 2478 Farey Sequence(欧拉函数是基于寻求筛法素数)
http://poj.org/problem?id=2478 求欧拉函数的模板. 初涉欧拉函数,先学一学它主要的性质. 1.欧拉函数是求小于n且和n互质(包含1)的正整数的个数. 记为φ(n). 2. ...
- hdu1787 GCD Again poj 2478 Farey Sequence 欧拉函数
hdu1787,直接求欧拉函数 #include <iostream> #include <cstdio> using namespace std; int n; int ph ...
- HDU - 2824 The Euler function 欧拉函数筛 模板
HDU - 2824 题意: 求[a,b]间的欧拉函数和.这道题卡内存,只能开一个数组. 思路: ϕ(n) = n * (p-1)/p * ... 可利用线性筛法求出所有ϕ(n) . #include ...
- hdu 2824 The Euler function 欧拉函数打表
The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu 2824 The Euler function
The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU——2824 The Euler function
The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- poj 2478 Farey Sequence 欧拉函数前缀和
Farey Sequence Time Limit: 1000MS Memory Limit: 65536K Description The Farey Sequence Fn for ...
- POJ 2478 Farey Sequence
名字是法雷数列其实是欧拉phi函数 Farey Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
随机推荐
- taro 更新
更新 Taro 提供了更新命令来更新 CLI 工具自身和项目中 Taro 相关的依赖 更新 Taro CLI 工具 # taro $ taro update self # npm npm i -g @ ...
- websocket 协议 使用
1.websocket简介 websocket最主要特点是:服务器可以主动给浏览器发送消息,而不是被动接收浏览器请求. websock协议可以参考:http://www.ruanyifeng.com/ ...
- Java 同步器
CyclicBarrier是什么 CyclicBarrier也叫同步屏障,在JDK1.5被引入,可以让一组线程达到一个屏障时被阻塞,直到最后一个线程达到屏障时,所以被阻塞的线程才能继续执行.Cycli ...
- XHTML学习书籍
http://baike.baidu.com/view/15906.htm XHTML学习书籍 可扩展超文本置标语言(eXtensible HyperText Markup Language,XH ...
- centos 配置 samba 与windows共享文件夹
yum install samba /etc/samba/smb.conf directory mask = 0777 ← 指定新建目录的属性(以下4行) force directory mode = ...
- 委托与事件代码详解与(Object sender,EventArgs e)详解
委托与事件代码详解 using System;using System.Collections.Generic;using System.Text; namespace @Delegate //自定义 ...
- 在Cocos2d-X中使用xml
XML就可以扩展标记语言.在游戏开发中,经常使用于保存游戏信息,如最高分,游戏等级.等信息,和描写叙述一些资源等,我第一次使用xml是在使用CCAnimation创建动画中,使用plist文件载入动画 ...
- 连接oracle时报错:ORA-28001: the password has expired
调试Web项目的时候出现异常: java.sql.SQLException: ORA-28001: the password has expired 网上查了一下,是Oracle11g密码过期的原因 ...
- atitit.产品console 日志的aticonsole 方案处理总结
atitit.产品console 日志的aticonsole 方案处理总结 1. 主要原理流程 1 2. 调用代码 1 3. 内部主要实现 1 3.1. 放入消息 1 3.2. 读取消息 2 默认可以 ...
- 05、Windows Store app 的图片裁切(更新)
在 Win Phone Silverlight api 中,有一个 PhotoChooserTask 选择器,指定宽.高属性,在选择图片的时候, 可以进行裁切,代码: PhotoChooserTask ...