图论·Floyd算法·HDU2544&1874 (伪)2066
在看到1874的题时,第一反应是用上一篇的并查集方法,后来查了一下是要用Floyd做,所以就去查Floyd算法的资料。
即插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法。
核心代码: map[i][j]=min(map[i][j],map[i][k]+map[k][j]) k是穷举i,j之间的断点。
注:时间复杂度为O(n^3),不适合计算大量数据。
接下来是1874的题目:
畅通工程续 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 19100 Accepted Submission(s): 6602
Problem Description 某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input 本题目包含多组数据,请处理到文件结束。 每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。 接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。 再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output 对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input 3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
Sample Output 2 -1
#include <iostream>
#include <stdio.h>
using namespace std;
int N=,oo=;
int a[N][N];
int main()
{
int n,m,i,j,k,x,y,z,s,e;
while (~scanf("%d%d",&n,&m))
{
for (i=;i<n;i++) for (j=;j<n;j++) a[i][j]=oo;//初始化为最大数
for (i=;i<n;i++) a[i][i]=; //远点路程为0
for (i=;i<m;i++)
{
scanf("%d%d%d",&x,&y,&z);
if (a[x][y]>z) {
a[x][y]=z;
a[y][x]=z;
}
}
for (k=;k<n;k++) //i,j中的断点
for (i=;i<n;i++)
for (j=i+;j<n;j++)
if (a[i][j]>a[i][k]+a[k][j]){ //最短路
a[i][j]=a[i][k]+a[k][j];
a[j][i]=a[i][j];
}
cin>>s>>e;
if (a[s][e]==oo) cout<<"-1"<<endl; //不能到达
else cout<<a[s][e]<<endl;//能到达,从s到e的最短路
}
}
至于2544只需在1874上修改一点就行~~~
要注意一点map[i][j]=map[j][i],要是忘了这一步就错了......(表示就是这里错得很惨)。
再就是伪HDU2066题,我是打算用Floyd做,只需要再加一个两重循环就够了,但!是!不用交我也知道绝对超时了,算一下测试数据,要近一分钟才出答案o(╯□╰)o,所以这里是伪2066~传说要用Dijkstra做,今天再看这个内容。
PS:这是补上昨天的内容\(≧▽≦)/~
图论·Floyd算法·HDU2544&1874 (伪)2066的更多相关文章
- [图论]Floyd 算法小结
Floyd 算法小结 By Wine93 2013.11 1. Floyd算法简介 Floyd算法利用动态规划思想可以求出任意2点间的最短路径,时间复杂度为O(n^3),对于稠密图, 效率要高于执行 ...
- 图论——Floyd算法拓展及其动规本质
一.Floyd算法本质 首先,关于Floyd算法: Floyd-Warshall算法是一种在具有正或负边缘权重(但没有负周期)的加权图中找到最短路径的算法.算法的单个执行将找到所有顶点对之间的最短路径 ...
- 【uva 10048】Audiophobia(图论--Floyd算法)
题意:有一个N点M边的无向带权图,边权表示路径上的噪声值.有Q个询问,输出 x,y 两点间的最大噪声值最小的路径的该值.(N≤100,M≤1000,Q≤10000) 解法:N值小,且问多对点之间的路径 ...
- Dijkstra算法and Floyd算法 HDU 1874 畅通工程续
Dijkstra算法描述起来比较容易:它是求单源最短路径的,也就是求某一个点到其他各个点的最短路径,大体思想和prim算法差不多,有个数组dis,用来保存源点到其它各个点的距离,刚开始很好办,只需要把 ...
- 图论(floyd算法):NOI2007 社交网络
[NOI2007] 社交网络 ★★ 输入文件:network1.in 输出文件:network1.out 简单对比 时间限制:1 s 内存限制:128 MB [问题描述] 在社交网络( ...
- 图论之最短路径floyd算法
Floyd算法是图论中经典的多源最短路径算法,即求任意两点之间的最短路径. 它可采用动态规划思想,因为它满足最优子结构性质,即最短路径序列的子序列也是最短路径. 举例说明最优子结构性质,上图中1号到5 ...
- HDU 2066 最短路floyd算法+优化
http://acm.hdu.edu.cn/showproblem.php?pid=206 题意 从任意一个邻居家出发 到达任意一个终点的 最小距离 解析 求多源最短路 我想到的是Floyd算法 但是 ...
- HDU 1874 畅通工程续(模板题——Floyd算法)
题目: 某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多.这让行人很困扰 ...
- 图论篇3——最短路径 Dijkstra算法、Floyd算法
最短路径 问题背景:地图上有很多个城市,已知各城市之间距离(或者是所需时间,后面都用距离了),一般问题无外乎就是以下几个: 从某城市到其余所有城市的最短距离[单源最短路径] 所有城市之间相互的最短距离 ...
随机推荐
- T4语法
阅读目录 阅读目录 1.什么是T4? 2.vs插件的安装 3.T4初体验 4.T4语法 其实对于“T4模板”的学习,讲得最详细的还是MSDN,下面给出对应的链接,可以点开深入的了解. 回到顶部 1 ...
- 关于oracle 11g导出数据时 报 ORA 1455错误的处理
因为导出的该用户的表可能存在空数据表,那么可能就会出现此其异常. 首先: 查看: SQL>show parameter deferred_segment_creation; 假设为T ...
- luogu1026 统计单词个数
题目大意 给出一个长度不超过200的由小写英文字母组成的字母串(约定;该字串以每行20个字母的方式输入,且保证每行一定为20个).要求将此字母串分成k份(1< k< =40),且每份中包含 ...
- luogu1268 树的重量
题目大意 给出一棵树上每两个叶子节点之间的距离,求树的总边权和. 题解 定义节点a到b的简单路径长度为[a,b],树中节点c要到达路径[a,b]所要经过的距离为dist(c, [a,b]),在树中,与 ...
- C# winform KeyPress 事件中对应的数字
C# winform KeyPress 事件中对应的数字所有e.KeyChar值的意思 常用ASCII码表 你自己看看应该就明白了 键盘 ASCII码 键盘 ASCII码 ESC 27 7 55 S ...
- nyoj--1100--WAJUEJI which home strong!(bfs)
WAJUEJI which home strong! 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 在一个山沟里,姐弟俩同时考上了大学.但由于家里拮据,所以这并不是什么 ...
- B5248 [2018多省省队联测]一双木棋 状压dp
这个题当时划水,得了二十分,现在来整一整. 这个题用状压来压缩边界线,然后通过记忆化搜索进行dp.我们可以观察到,其实每次转移,就是把一个1向左移一位.最后的状态设为0. 这其中还要有一个变量来记录谁 ...
- 解析HTML文件
#!/usr/bin/env python3 # -*- coding: UTF-8 -*- from bs4 import BeautifulSoup import operator import ...
- Cash Machine(多重背包)
http://poj.org/problem?id=1276 #include <stdio.h> #include <string.h> ; #define Max(a,b) ...
- Halcon学习笔记之支持向量机(一)
例程:class_overlap_svm.hdev 说明:这个例程展示了如何用一个支持向量机来给一幅二维的图像进行分类.使用二维数据的原因是因为它可以很容易地联想成为区域和图像.本例程中使用了三个互相 ...