HDU 4786Fibonacci Tree(最小生成树)
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5934 Accepted Submission(s):
1845
Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides
to solve the following problem:
Consider a bidirectional graph G with N
vertices and M edges. All edges are painted into either white or black. Can we
find a Spanning Tree with some positive Fibonacci number of white
edges?
(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
the number of test cases.
For each test case, the first line contains two
integers N(1 <= N <= 105) and M(0 <= M <=
105).
Then M lines follow, each contains three integers u, v (1
<= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge
between u and v with a color c (1 for white and 0 for black).
the case number and s is either “Yes” or “No” (without quotes) representing the
answer to the problem.
4 4
1 2 1
2 3 1
3 4 1
1 4 0
5 6
1 2 1
1 3 1
1 4 1
1 5 1
3 5 1
4 2 1
Case #2: No
对于最小生成树来说,任意删除一条边,并加入一条没有出现过的边,这样的话权值至多加1,边界为最大生成树
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN=1e6+,INF=1e9+;
inline char nc()
{
static char buf[MAXN],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,MAXN,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
char c=nc();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=nc();}
while(c>=''&&c<=''){x=x*+c-'';c=nc();}
return x*f;
}
struct node
{
int u,v,w;
}edge[MAXN];
int num=;
inline void AddEdge(int x,int y,int z)
{
edge[num].u=x;
edge[num].v=y;
edge[num].w=z;num++;
}
int N,M;
int fib[MAXN];
int fa[MAXN];
int comp1(const node &a,const node &b){return a.w<b.w;}
int comp2(const node &a,const node &b){return a.w>b.w;}
int find(int x)
{
if(fa[x]==x) return fa[x];
else return fa[x]=find(fa[x]);
}
void unionn(int x,int y)
{
int fx=find(x);
int fy=find(y);
fa[fx]=fy;
}
int Kruskal(int opt)
{
if(opt==) sort(edge+,edge+num,comp1);
else sort(edge+,edge+num,comp2);
int ans=,tot=;
for(int i=;i<=num-;i++)
{
int x=edge[i].u,y=edge[i].v,z=edge[i].w;
if(find(x) == find(y)) continue;
unionn(x,y);
tot++;
ans=ans+z;
if(tot==N-) return ans;
}
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
int Test=read();
fib[]=;fib[]=;
for(int i=;i<=;i++) fib[i]=fib[i-]+fib[i-];
int cnt=;
while(Test--)
{
N=read(),M=read();num=;
for(int i=;i<=N;i++) fa[i]=i;
for(int i=;i<=M;i++)
{
int x=read(),y=read(),z=read();
AddEdge(x,y,z);
AddEdge(y,x,z);
}
int minn=Kruskal();
for(int i=;i<=N;i++) fa[i]=i;
int maxx=Kruskal();
bool flag=;
for(int i=;i<=;i++)
if(minn <= fib[i] && fib[i] <= maxx)
{printf("Case #%d: Yes\n",++cnt);flag=;break;}
if(flag==) printf("Case #%d: No\n",++cnt);
}
return ;
}
HDU 4786Fibonacci Tree(最小生成树)的更多相关文章
- hdu 5909 Tree Cutting [树形DP fwt]
hdu 5909 Tree Cutting 题意:一颗无根树,每个点有权值,连通子树的权值为异或和,求异或和为[0,m)的方案数 \(f[i][j]\)表示子树i中经过i的连通子树异或和为j的方案数 ...
- hdu Constructing Roads (最小生成树)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1102 /************************************************* ...
- HDU 5044 Tree(树链剖分)
HDU 5044 Tree field=problem&key=2014+ACM%2FICPC+Asia+Regional+Shanghai+Online&source=1&s ...
- [HDU 5293]Tree chain problem(树形dp+树链剖分)
[HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...
- HDU 4408 Minimum Spanning Tree 最小生成树计数
Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- HDU 2489 Minimal Ratio Tree 最小生成树+DFS
Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 4786 Fibonacci Tree 最小生成树
Fibonacci Tree 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4786 Description Coach Pang is intere ...
- HDU 4757 Tree(可持久化Trie+Tarjan离线LCA)
Tree Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others) Total Su ...
- 数据结构与算法分析–Minimum Spanning Tree(最小生成树)
给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...
随机推荐
- Knockout源代码精析-怎样解析demo元素,获取到bindings(二)?
接上文这里開始分析applyBindingsToNodeInternal.applyBindingsToNodeInternal方法例如以下: function applyBindingsToNode ...
- 【大话QT之十】实现FTP断点续传
应用需求: 网盘开发工作逐步进入各部分的整合阶段,当用户在client改动或新添加一个文件时.该文件要同步上传到server端相应的用户文件夹下,因此针对传输数据(即:上传.下载)这一块如今既定了三种 ...
- nyoj--84--阶乘的0(数学技巧)
阶乘的0 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 计算n!的十进制表示最后有多少个0 输入 第一行输入一个整数N表示测试数据的组数(1<=N<=100 ...
- ora-01157怎么解决
在数据库startup时,出现以下两个错误:ora-01157:cannot identify/lock data file 8 -see DBWR trace fileora-01110:data ...
- Gulp 相关
获取执行在文件列表: http://www.thinksaas.cn/ask/question/21950/ 用through2这个插件. var through = require('through ...
- Angular4集成ng2-file-upload
在Github上找到了一个支持Angular4好用的文件上传组件ng2-file-upload,这里简单介绍一下这个库的集成使用方案. 本文基于该组件的1.2.1版. 1. 安装 安装非常简单, ...
- Intellij IDEA 2018.3激活破解方法(解决key is invalid)
1.程序安装包: https://download.jetbrains.8686c.com/idea/ideaIU-2018.3.exe 2.破解补丁:http://idea.lanyus.com/j ...
- .NET 拼音汉字转化(全面)
引言 这是一个.NET 用C#语言编写的 拼音转汉字类,考虑到有很多拼音转汉字,但是试用过发现大部分有很多生僻字都没有办法显示.在此分享一个支持绝大多数的较为全面的拼音汉字转化帮助类.不多说,代码附 ...
- nginx开启gzip压缩后导致apk包下载不能正常安装
最后更新时间:2019/4/27 nginx一般都会开启gzip压缩,以提升传输性能. 配置如下: gzip on; gzip_comp_level 2; gzip_min_length 1k; gz ...
- jQuery第四课 点击 _选项卡效果一
//鼠标移到上面是显示手型cursor:pointer jquery 的函数: siblings //兄弟节点,同胞元素 :eq()选择器选取带有指定 index 值的元素.index 值从 0 开始 ...