Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5934    Accepted Submission(s):
1845

Problem Description
  Coach Pang is interested in Fibonacci numbers while
Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides
to solve the following problem:
  Consider a bidirectional graph G with N
vertices and M edges. All edges are painted into either white or black. Can we
find a Spanning Tree with some positive Fibonacci number of white
edges?
(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
 
Input
  The first line of the input contains an integer T,
the number of test cases.
  For each test case, the first line contains two
integers N(1 <= N <= 105) and M(0 <= M <=
105).
  Then M lines follow, each contains three integers u, v (1
<= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge
between u and v with a color c (1 for white and 0 for black).
 
Output
  For each test case, output a line “Case #x: s”. x is
the case number and s is either “Yes” or “No” (without quotes) representing the
answer to the problem.
 
Sample Input
2
4 4
1 2 1
2 3 1
3 4 1
1 4 0
5 6
1 2 1
1 3 1
1 4 1
1 5 1
3 5 1
4 2 1
 
Sample Output
Case #1: Yes
Case #2: No
 
Source
 
Recommend
We have carefully selected several similar problems for
you:  6263 6262 6261 6260 6259 
 
 
和昨天ysy讲的那道题差不多
而且这道题在题目中直接给提示了——》黑边为0,白边为1
这样的话我们做一个最小生成树和一个最大生成树
如果在这两个值的范围内有斐波那契数,就说明满足条件
 
简单证明:
对于最小生成树来说,任意删除一条边,并加入一条没有出现过的边,这样的话权值至多加1,边界为最大生成树
 
 
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN=1e6+,INF=1e9+;
inline char nc()
{
static char buf[MAXN],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,MAXN,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
char c=nc();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=nc();}
while(c>=''&&c<=''){x=x*+c-'';c=nc();}
return x*f;
}
struct node
{
int u,v,w;
}edge[MAXN];
int num=;
inline void AddEdge(int x,int y,int z)
{
edge[num].u=x;
edge[num].v=y;
edge[num].w=z;num++;
}
int N,M;
int fib[MAXN];
int fa[MAXN];
int comp1(const node &a,const node &b){return a.w<b.w;}
int comp2(const node &a,const node &b){return a.w>b.w;}
int find(int x)
{
if(fa[x]==x) return fa[x];
else return fa[x]=find(fa[x]);
}
void unionn(int x,int y)
{
int fx=find(x);
int fy=find(y);
fa[fx]=fy;
}
int Kruskal(int opt)
{
if(opt==) sort(edge+,edge+num,comp1);
else sort(edge+,edge+num,comp2);
int ans=,tot=;
for(int i=;i<=num-;i++)
{
int x=edge[i].u,y=edge[i].v,z=edge[i].w;
if(find(x) == find(y)) continue;
unionn(x,y);
tot++;
ans=ans+z;
if(tot==N-) return ans;
}
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
int Test=read();
fib[]=;fib[]=;
for(int i=;i<=;i++) fib[i]=fib[i-]+fib[i-];
int cnt=;
while(Test--)
{
N=read(),M=read();num=;
for(int i=;i<=N;i++) fa[i]=i;
for(int i=;i<=M;i++)
{
int x=read(),y=read(),z=read();
AddEdge(x,y,z);
AddEdge(y,x,z);
}
int minn=Kruskal();
for(int i=;i<=N;i++) fa[i]=i;
int maxx=Kruskal();
bool flag=;
for(int i=;i<=;i++)
if(minn <= fib[i] && fib[i] <= maxx)
{printf("Case #%d: Yes\n",++cnt);flag=;break;}
if(flag==) printf("Case #%d: No\n",++cnt);
}
return ;
}

HDU 4786Fibonacci Tree(最小生成树)的更多相关文章

  1. hdu 5909 Tree Cutting [树形DP fwt]

    hdu 5909 Tree Cutting 题意:一颗无根树,每个点有权值,连通子树的权值为异或和,求异或和为[0,m)的方案数 \(f[i][j]\)表示子树i中经过i的连通子树异或和为j的方案数 ...

  2. hdu Constructing Roads (最小生成树)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1102 /************************************************* ...

  3. HDU 5044 Tree(树链剖分)

    HDU 5044 Tree field=problem&key=2014+ACM%2FICPC+Asia+Regional+Shanghai+Online&source=1&s ...

  4. [HDU 5293]Tree chain problem(树形dp+树链剖分)

    [HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...

  5. HDU 4408 Minimum Spanning Tree 最小生成树计数

    Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  6. HDU 2489 Minimal Ratio Tree 最小生成树+DFS

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  7. HDU 4786 Fibonacci Tree 最小生成树

    Fibonacci Tree 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4786 Description Coach Pang is intere ...

  8. HDU 4757 Tree(可持久化Trie+Tarjan离线LCA)

    Tree Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Total Su ...

  9. 数据结构与算法分析–Minimum Spanning Tree(最小生成树)

    给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...

随机推荐

  1. hdu1290

    由二维的切割问题可知,平面切割与线之间的交点有关,即交点决定射线和线段的条数,从而决定新增的区域数. 当有n-1个平面时,切割的空间数为f(n-1).要有最多的空间数.则第n个平面需与前n-1个平面相 ...

  2. Java5新特性之枚举

    1.  概念 首先,枚举并非一种新技术,而是一种基础数据类型.它隶属于两种基础类型中的值类型,例如以下: 2.  为什么要有枚举 枚举在真正的开发中是非经常常使用的,它的作用非常easy也非常纯粹:它 ...

  3. 英语影视台词---八、the shawshank redemption

    英语影视台词---八.the shawshank redemption 一.总结 一句话总结:肖申克的救赎 1.It's funny. On the outside, I was an honest ...

  4. 几个常用ORACLE运维监控的SQL语句

    1.消耗CPUSELECT a.CPU_TIME, --CPU时间 百万分之一(微秒)              a.OPTIMIZER_MODE,--优化方式              a.EXEC ...

  5. 记录一下c++的一点指针所得

    c++有两种传值可以改变外部参数,一种是传递指针,另一种是传递引用,对于前者,可以用Ugly(but explicitly),对于后者,Clean(but hidden),在传递的时候有一种值得注意的 ...

  6. Django之ORM数据库增删改查

    总结:ORM的 查.增.删.改 - 查 - client - 有一个展示页面(xxx_show.html) - 这一个页面一输入执行后,get请求向server端发送 - 这个展示页面有添加按钮.删除 ...

  7. 还是bib问题

    虽然昨天把添加bib的基本问题解决了,但是bib的参考文献没有了中括号.查了一下华东师大,只是给出了如何去掉中括号的方法. http://math.ecnu.edu.cn/~latex/doc.htm ...

  8. 一个PHPer如何深入学习ES搜索引擎?

    公司早在一年前就上ES作为后端搜索服务的项目 ,我们PHPer只是负责实现业务接口,es的一些查询,优化技巧由另一组同事(JAVAer)负责,有时,一个需求过来,改动较大时,需要更改查询json语句, ...

  9. SpringBoot学习笔记(9)----SpringBoot中使用关系型数据库以及事务处理

    在实际的运用开发中,跟数据库之间的交互是必不可少的,SpringBoot也提供了两种跟数据库交互的方式. 1. 使用JdbcTemplate 在SpringBoot中提供了JdbcTemplate模板 ...

  10. 【BZOJ4826】【HNOI2017】影魔

    题意: Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还有英雄. ...