Project Euler 34 Digit factorials
题意:判断一个数 N 的各个位数阶乘之和是否为其本身,找出所有符合要求的数然后求和
思路:此题思路跟 30 题相同,找到枚举上界 10 ^ n <= 9! × n ,符合要求的 n < 6 ,因此选择 9! × 6 作为上界
/*************************************************************************
> File Name: euler034.c
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年06月23日 星期五 13时52分58秒
************************************************************************/
#include <stdio.h>
#include <inttypes.h>
#define MAX_N 2177280
int32_t fac[10];
void init_fac(){
fac[0] = 1;
for(int32_t i = 1 ; i < 10 ; i++) fac[i] = fac[i-1] * i;
}
bool isNumber(int32_t n){
int32_t sum = 0 , x = n;
while(x){
sum += fac[ x % 10 ];
x /= 10;
}
return sum == n;
}
int32_t main(){
int32_t sum = 0;
init_fac();
for(int32_t i = 3 ; i <= MAX_N ; i++){
if( isNumber(i) ) sum += i;
}
printf("%d\n",sum);
return 0;
}
Project Euler 34 Digit factorials的更多相关文章
- Project Euler:Problem 34 Digit factorials
145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are ...
- Project Euler 33 Digit cancelling fractions
题意:49/98是一个有趣的分数,因为可能在化简时错误地认为,等式49/98 = 4/8之所以成立,是因为在分数线上下同时抹除了9的缘故.分子分母是两位数且分子小于分母的这种有趣的分数有4个,将这四个 ...
- Project Euler 30 Digit fifth powers
题意:判断一个数 N 的每一位的5次方的和是否为其本身 ,求出所有满足条件的数的和 思路:首先设这个数 N 为 n 位,可以简单的判断一下这个问题的上界 10 ^ n <= 9 ^ 5 × n, ...
- (Problem 34)Digit factorials
145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are ...
- Python练习题 047:Project Euler 020:阶乘结果各数字之和
本题来自 Project Euler 第20题:https://projecteuler.net/problem=20 ''' Project Euler: Problem 20: Factorial ...
- Python练习题 044:Project Euler 016:乘方结果各个数值之和
本题来自 Project Euler 第16题:https://projecteuler.net/problem=16 ''' Project Euler 16: Power digit sum 2* ...
- Python练习题 039:Project Euler 011:网格中4个数字的最大乘积
本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...
- Python练习题 035:Project Euler 007:第10001个素数
本题来自 Project Euler 第7题:https://projecteuler.net/problem=7 # Project Euler: Problem 7: 10001st prime ...
- Python练习题 030:Project Euler 002:偶数斐波那契数之和
本题来自 Project Euler 第2题:https://projecteuler.net/problem=2 # Each new term in the Fibonacci sequence ...
随机推荐
- MySQL性能分析、及调优工具使用详解
本文汇总了MySQL DBA日常工作中用到的些工具,方便初学者,也便于自己查阅. 先介绍下基础设施(CPU.IO.网络等)检查的工具: vmstat.sar(sysstat工具包).mpstat.op ...
- C#版winform实现UrlEncode
在Asp.net中可以使用Server.HTMLEncode和Server.URLEncode 将文本或URL的特殊字符编码,但在控制台或Winform程序中没有办法使用到这些方法, 解决办法:右击项 ...
- CSDN日报20170416 ——《为什么程序猿话少钱多死得早?》
[程序人生]为什么程序猿话少钱多死得早? 作者:文奇 我在想,程序猿都是话少吗?不一定吧.像我和我的同学.都是话非常多啊. 可是经历过非常多事的如今.再想想,发现事实的确如此.程序猿确实话少. 我是一 ...
- Dynamics CRM 2015 New Feature (9): Services Changes
Dynamics CRM 2015 为开发者加入了一些新的Service Request以及一个帮助类库XrmTooling,它支持连接各种环境下的CRM,比方:Online,O365,On Prem ...
- sass基础教程
1. 使用变量; $highlight-color: #F90; .selected { border: 1px solid $highlight-color; } //编译后 .selected { ...
- ORM进阶:Hibernate框架搭建及开发
本节将開始.使用hibernate搭建持久层.当然在决定用不用之前,还请斟酌一下是否使用.了解一下Hibernate的优缺点. Hibernate优劣对照 Hibernate是一个持久的ORM框架.首 ...
- [ajax 学习笔记] ajax初试
ajax全称是:asynchronous javasctipt and xml. 1.为什么须要ajax? 一般web程序与server的交互是:页面发送请求等待server处理,server处理数据 ...
- cocos2d-x的gitignore配置
# Ignore thumbnails created by windows Thumbs.db # Ignore files build by Visual Studio *.obj *.exe * ...
- crm高速开发之OrganizationService
这是主要的开发模式: /* 创建者:菜刀居士的博客 * 创建日期:2014年07月06号 */ namespace Net.CRM.OrganizationService { using ...
- sublime界面主题
一直以来都是使用的SUBLIME,真的很强大. 最近刚转到linux来学习C,把它重新配置了一遍,默认的字体颜色的搭配已经很不错了.不过界面的样子还是不太习惯.重新安装了下soda这个主题包,惭愧!即 ...