1、摘要:

提出了一种新的深度强化学习框架的新闻推荐。由于新闻特征和用户喜好的动态特性,在线个性化新闻推荐是一个极具挑战性的问题。

虽然已经提出了一些在线推荐模型来解决新闻推荐的动态特性,但是这些方法主要存在三个问题:①只尝试模拟当前的奖励(eg:点击率)②很少考虑使用除了点击 / 不点击标签之外的用户反馈来帮助改进推荐。③ 这些方法往往会向用户推荐类似消息,这可能会导致用户感到厌烦。

基于深度强化学习的推荐框架,该框架可以模拟未来的奖励(点击率)

2、引言:

新闻推荐三个问题:

(1)新闻推荐的动态变化是难以处理的。

(2)用户的兴趣可能随着时间的变化而变化。

(3)创新

强化学习:假定一个智能体(agent),在一个未知的环境中(当前状态state),采取了一个行动(action),然后收获了一个回报(reward),并进入了下一个状态。最终目的是求解一个策略让agent的回报最大化。

因此,本文提出了基于深度强化学习的推荐系统框架来解决上述提到的三个问题:

(1)首先,使用DQN网络来有效建模新闻推荐的动态变化属性,DQN可以将短期回报和长期回报进行有效的模拟。

(2)将用户活跃度作为一种新的反馈信息。

(3)使用Dueling Bandit Gradient Descent 方法来进行有效的探索。

算法的框架如下图所示:

3、问题描述:

当一个用户 u 在时间 t 向推荐系统 G 发送一个新闻请求,系统会利用一个给定的新闻候选集 I 给用户推荐一个 top-k 列表给用户。

4、模型方法:

4.1 整体架构图:

几个关键环节:

push:在每一个时刻,用户发送请求时,agent根据当前的state产生k篇新闻推荐给用户。

Feedback:通过用户对推荐新闻的点击行为得到反馈结果。

minor update:在每个时间点过后,根据用户的信息(state)和推荐的新闻(action)以及得到的反馈(reward),更新参数。

major update:在一段时间后,根据DQN的经验池中存放的历史经验,对模型参数进行更新。

6、DRN-----深度强化学习在新闻推荐上的应用的更多相关文章

  1. 一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm)

    一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm) 2017-12-25  16:29:19   对于 A3C 算法感觉自己总是一知半解,现将其梳理一下,记录在此,也 ...

  2. (转) 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文)

    本文转自:http://mp.weixin.qq.com/s/aAHbybdbs_GtY8OyU6h5WA 专题 | 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文) 原创 201 ...

  3. 深度强化学习(Deep Reinforcement Learning)入门:RL base & DQN-DDPG-A3C introduction

    转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应 ...

  4. 深度强化学习(DRL)专栏(一)

    目录: 1. 引言 专栏知识结构 从AlphaGo看深度强化学习 2. 强化学习基础知识 强化学习问题 马尔科夫决策过程 最优价值函数和贝尔曼方程 3. 有模型的强化学习方法 价值迭代 策略迭代 4. ...

  5. 深度强化学习(DRL)专栏开篇

    2015年,DeepMind团队在Nature杂志上发表了一篇文章名为"Human-level control through deep reinforcement learning&quo ...

  6. 深度强化学习中稀疏奖励问题Sparse Reward

    Sparse Reward 推荐资料 <深度强化学习中稀疏奖励问题研究综述>1 李宏毅深度强化学习Sparse Reward4 ​ 强化学习算法在被引入深度神经网络后,对大量样本的需求更加 ...

  7. 【资料总结】| Deep Reinforcement Learning 深度强化学习

    在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习.有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准.如果说监督学习的目标是预测,那么强 ...

  8. 深度学习课程笔记(十四)深度强化学习 --- Proximal Policy Optimization (PPO)

    深度学习课程笔记(十四)深度强化学习 ---  Proximal Policy Optimization (PPO) 2018-07-17 16:54:51  Reference: https://b ...

  9. 深度学习课程笔记(十三)深度强化学习 --- 策略梯度方法(Policy Gradient Methods)

    深度学习课程笔记(十三)深度强化学习 --- 策略梯度方法(Policy Gradient Methods) 2018-07-17 16:50:12 Reference:https://www.you ...

随机推荐

  1. vue-cli webpack配置中 如何启动less-loader sass-loader

    在vue-cli中构建的项目是可以使用less的,但是查看package.json可以发现,并没有less相关的插件,所以我们需要自行安装. //第一步:安装 npm install less les ...

  2. C++_String_类字符串操作(转)

    从百度文库找的,挺详细的,跟大家分享一下. 标红的是我觉得用的比较多,并且大家不太熟悉的. string类的构造函数: string(const char *s);     //用c字符串s初始化 s ...

  3. dp入门—数塔

    在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的: 有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?  已经告诉你了,这是个DP的题 ...

  4. css——样式的优先级

    样式的优先级 在p中有id,class,标签,行内样式,它们的优先级: 1.id 样式>class样式>标签样式 2.行内样式>内嵌样式>外部样式 强制优先级 比如我希望上面的 ...

  5. Is jQuery Still Relevant in 2018?

    DOM Selection $('.someclass') document.querySelector('.someclass') document.querySlectorAll('.somecl ...

  6. [中文] 以太坊(Ethereum )白皮书

    以太坊(Ethereum ):下一代智能合约和去中心化应用平台 翻译|巨蟹 .少平 译者注|中文读者可以到以太坊爱好者社区(www.ethfans.org)获取最新的以太坊信息. 当中本聪在2009年 ...

  7. plsql 中出现 Dynamic Performance Tables not accessible 问题解决

    产生该提示原因: plsql dev在用户运行过程中,要收集用户统计信息,但是由于你现在登录的用户没有访问v$session,v$sesstat and v$statname视图的权限, 所以不能收集 ...

  8. Python3的URL编码解码

    前言 博主最近在用python3练习一些爬虫脚本的时候,发现一些url的编码问题,在浏览器提交请求api时,如果url中包含汉子,就会被自动编码掉.呈现的结果是 ==> %xx%xx%xx.如果 ...

  9. invalid application of `sizeof' to incomplete type `char[] '

    在写代码时,我想用extern来关联一个数组,然后利用sizeof计算数组的大小,代码如下: ... extern char a[]; #define b size=(sizeof(a)/sizeof ...

  10. java中Collection 与Collections的区别

    1. Collection是集合类的一个顶级接口,其直接继承接口有List与Set 而Collections则是集合类的一个工具类/帮助类,其中提供了一系列静态方法,用于对集合中元素进行排序.搜索以及 ...