maximum estimator method more known as MLE of a uniform distribution

[0,θ] 区间上的均匀分布为例,独立同分布地采样样本 x1,x2,…,xn,我们知均匀分布的期望为:θ2。

首先我们来看,如何通过最大似然估计的形式估计均匀分布的期望。均匀分布的概率密度函数为:f(x|θ)=1θ,0≤x≤θ。不失一般性地,将 x1,x2,…,xn 排序为顺序统计量:x(1)≤x(2)≤⋯≤x(n)。则根据似然函数定义,在此样本集合上的似然函数为:

L(θ|x)=∏i=1n1θ=θ−n(∗)

对 x(1)≥0,x(n)≤θ,否则为 0。然后求其对数形式关于 θ 的导数:

dlnL(θ|x)dθ=−nθ<0.

导数小于 0,因此可以说 L(x|θ) 是单调减函数 θ≥x(n),因此当 θ=x(n)(θ 能取到的最小值),也即 θ=max{x1,x2,…,xn} 时,L(x|θ) 值最大,则关于 θ 的最大似然估计为:

θ^=x(n)=max{x1,x2,…,xn}

均匀分布(uniform distribution)期望的最大似然估计(maximum likelihood estimation)的更多相关文章

  1. 最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络

    最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写 ...

  2. 最大似然估计(Maximum likelihood estimation)(通过例子理解)

    似然与概率 https://blog.csdn.net/u014182497/article/details/82252456 在统计学中,似然函数(likelihood function,通常简写为 ...

  3. 最大似然估计(Maximum likelihood estimation)

    最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:"模型已定,参数未知".简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差 ...

  4. Maximum Likelihood及Maximum Likelihood Estimation

    1.What is Maximum Likelihood? 极大似然是一种找到最可能解释一组观测数据的函数的方法. Maximum Likelihood is a way to find the mo ...

  5. 似然函数 | 最大似然估计 | likelihood | maximum likelihood estimation | R代码

    学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计 ...

  6. Linear Regression and Maximum Likelihood Estimation

    Imagination is an outcome of what you learned. If you can imagine the world, that means you have lea ...

  7. 【MLE】最大似然估计Maximum Likelihood Estimation

    模型已定,参数未知 已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值.最大似然估计是建立在这样的思想上:已知某个参数能使这个 ...

  8. 最大似然预计(Maximum likelihood estimation)

    一.定义     最大似然预计是一种依据样本来预计模型參数的方法.其思想是,对于已知的样本,如果它服从某种模型,预计模型中未知的參数,使该模型出现这些样本的概率最大.这样就得到了未知參数的预计值. 二 ...

  9. 机器学习的MLE和MAP:最大似然估计和最大后验估计

    https://zhuanlan.zhihu.com/p/32480810 TLDR (or the take away) 频率学派 - Frequentist - Maximum Likelihoo ...

随机推荐

  1. 工厂方法模式(Product)C++实现

    意图:定义一个用于创建对象的接口,让子类觉定实例化哪一个类. 适用性:1.一个类不知道它必须创建的对象的时候. 2.一个类希望由它的子类指定它所创建的对象的时候. 3.当类将创建对象的职责委托给多个帮 ...

  2. 图片全屏轮播插件poposlides

    jQuery轻量级全屏自适应焦点图插件poposlides 在线演示本地下载

  3. (转)基于MVC4+EasyUI的Web开发框架经验总结(7)--实现省份、城市、行政区三者联动

    http://www.cnblogs.com/wuhuacong/p/3841338.html 为了提高客户体验和进行一些技术探索,现在正准备把我自己的客户关系管理系统CRM在做一个Web的版本,因此 ...

  4. strusts2_json

    引用别人的 Struts.xml <package name="default" extends ="json-default" > <act ...

  5. 配置H3C交换机ftp服务

    配置H3C交换机ftp服务,用于与交换机进行文件上传.下载,常用于更新程序上传及配置备份文件下载. 准备工作:三层设备(路由器.三层交换机等)至少一个接口配置IP,二层交换机需配置一个处于UP状态的v ...

  6. JA document的练习

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  7. windows mongodb启动

    D:\MongoDB\bin\mongod.exe --service --dbpath D:\MongoDB\data --logpath=D:\MongoDB\logs\mongodb.log - ...

  8. 【BZOJ3600】没有人的算术 - 替罪羊树+线段树

    题意: 题解: Orz vfleaking……真·神题 做法大概是先把题意中定义的“数”都赋一个实数权值,用平衡树来维护整个从大到小排序过的序列,再用线段树查询最值: 这样做为什么是对的?考虑插入一个 ...

  9. nyoj399-整除个数

    整除个数 时间限制:3000 ms  |  内存限制:65535 KB 难度:1 描述 1.2.3- -n这n(0<n<=1000000000)个数中有多少个数可以被正整数b整除. 输入 ...

  10. [luogu 2324][SCOI 2005] 骑士精神 (A*算法)

    Description 在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且有一个空位.在任何时候一个骑士都能按照骑士的走法(它可以走到和它横坐标相差为1,纵坐标相差为2或者横坐标相差为2, ...