scikit-learn:3.2. Grid Search: Searching for estimator parameters
參考:http://scikit-learn.org/stable/modules/grid_search.html
GridSearchCV通过(蛮力)搜索參数空间(參数的全部可能组合)。寻找最好的 Cross-validation:
evaluating estimator performance score相应的超參数(翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47099275)。比如Support
Vector Classifier的 C, kernel and gamma ,Lasso的alpha。etc。
A search consists of:
- an estimator (regressor or classifier such as sklearn.svm.SVC());
- a parameter space;
- a method for searching or sampling candidates;
- a cross-validation scheme
- a score
function.
RandomizedSearchCV 通过一定的分布sample候选參数。而不是搜索全部參数组合。
本节我们介绍 GridSearchCV、RandomizedSearchCV 、以及parameter
search的小Tips,最后介绍蛮力搜索的alternatives。
1、Exhaustive
Grid Search
GridSearchCV的參数param_grid定义搜索网格。
两个样例说明一切:
- See Parameter
estimation using grid search with cross-validation for an example of Grid Search computation on the digits dataset. - See Sample
pipeline for text feature extraction and evaluation for an example of Grid Search coupling parameters from a text documents feature extractor (n-gram count vectorizer and TF-IDF transformer) with a classifier (here a linear SVM trained with SGD with
either elastic net or L2 penalty) using a pipeline.Pipeline instance.
2、Randomized
Parameter Optimization
RandomizedSearchCV 通过在參数可能的取值的某个分布中sample一组參数。优点是:能够设定独立于參数(及全部取值)详细数量的一个搜索次数;加入无效的參数也不会减少效率。
搜索的次数通过 n_iter 设定,对于每个參数,假设是连续的取值。则通过一定的分布sample,假设是离散的取值,则通过uniform分布sample,比如:
[{'C': scipy.stats.expon(scale=100), 'gamma': scipy.stats.expon(scale=.1),
'kernel': ['rbf'], 'class_weight':['auto', None]}]
scipy.stats module提供了非常多用来sample參数的distributions,如expon, gamma, uniform or randint.
对于连续的參数,如 C ,一定要选择连续的分布来sample,而且适当增大 n_iter 通常会搜索到更好的參数组合。
给个样例:
- Comparing
randomized search and grid search for hyperparameter estimation compares the usage and efficiency of randomized search and grid search.
3、Tips
for parameter search(这几个建议很靠谱。。。
)
1)详细化目标函数
參数搜索默认使用score function(
即,分类用sklearn.metrics.accuracy_score 回归用sklearn.metrics.r2_score )来衡量參数的好坏对于有些应用(比方分类unbalance,score不是非常好的标准),通过详细化GridSearchCV和RandomizedSearchCV 的scoring parameter。See The
scoring parameter: defining model evaluation rules for more details.
2)综合estimators和parameter sapces(同一时候考虑预測器和參数空间)
Pipeline:
chaining estimators describes building composite estimators whose parameter space can be searched with these tools.
3)模型选择:先训练、再评估
用训练集选择模型。用測试集验证模型(using
the cross_validation.train_test_split utility
function.)(it is recommended to split the data into a development set (to be
fed to the GridSearchCV instance)
and an evaluation set to compute performance metrics.)
4)并行搜索
n_jobs=-1.
自己主动使用全部核。
5)robustness to failure(增强搜索错误的鲁棒性)
有些參数组合对于某些folds
of the data会failure,进而导致整个search failure,虽然其它的參数组合没有问题。
设定 error_score=0 (or =np.NaN)
能够使search过程忽略这种failure,只抛出一个warning,并将这种search结果设为0 (or =np.NaN)
,可以提高搜索遇到错误时的鲁棒性!
4、Alternatives
to brute force parameter search(没太看懂,还是不翻译了)
3.2.4.1. Model specific cross-validation
Some models can fit data for a range of value of some parameter almost as efficiently as fitting the estimator for a single value of the parameter. This feature can be leveraged to perform
a more efficient cross-validation used for model selection of this parameter.
The most common parameter amenable to this strategy is the parameter encoding the strength of the regularizer. In this case we say that we compute theregularization path of
the estimator.
Here is the list of such models:
| linear_model.ElasticNetCV([l1_ratio, eps, ...]) | Elastic Net model with iterative fitting along a regularization path |
| linear_model.LarsCV([fit_intercept, ...]) | Cross-validated Least Angle Regression model |
| linear_model.LassoCV([eps, n_alphas, ...]) | Lasso linear model with iterative fitting along a regularization path |
| linear_model.LassoLarsCV([fit_intercept, ...]) | Cross-validated Lasso, using the LARS algorithm |
| linear_model.LogisticRegressionCV([Cs, ...]) | Logistic Regression CV (aka logit, MaxEnt) classifier. |
| linear_model.MultiTaskElasticNetCV([...]) | Multi-task L1/L2 ElasticNet with built-in cross-validation. |
| linear_model.MultiTaskLassoCV([eps, ...]) | Multi-task L1/L2 Lasso with built-in cross-validation. |
| linear_model.OrthogonalMatchingPursuitCV([...]) | Cross-validated Orthogonal Matching Pursuit model (OMP) |
| linear_model.RidgeCV([alphas, ...]) | Ridge regression with built-in cross-validation. |
| linear_model.RidgeClassifierCV([alphas, ...]) | Ridge classifier with built-in cross-validation. |
3.2.4.2. Information Criterion
Some models can offer an information-theoretic closed-form formula of the optimal estimate of the regularization parameter by computing a single regularization path (instead of several when
using cross-validation).
Here is the list of models benefitting from the Aikike Information Criterion (AIC) or the Bayesian Information Criterion (BIC) for automated model selection:
| linear_model.LassoLarsIC([criterion, ...]) | Lasso model fit with Lars using BIC or AIC for model selection |
3.2.4.3. Out of Bag Estimates
When using ensemble methods base upon bagging, i.e. generating new training sets using sampling with replacement, part of the training set remains unused. For each classifier in the ensemble,
a different part of the training set is left out.
This left out portion can be used to estimate the generalization error without having to rely on a separate validation set. This estimate comes “for free” as no additional data is needed and
can be used for model selection.
This is currently implemented in the following classes:
| ensemble.RandomForestClassifier([...]) | A random forest classifier. |
| ensemble.RandomForestRegressor([...]) | A random forest regressor. |
| ensemble.ExtraTreesClassifier([...]) | An extra-trees classifier. |
| ensemble.ExtraTreesRegressor([n_estimators, ...]) | An extra-trees regressor. |
| ensemble.GradientBoostingClassifier([loss, ...]) | Gradient Boosting for classification. |
| ensemble.GradientBoostingRegressor([loss, ...]) | Gradient Boosting for regression. |
scikit-learn:3.2. Grid Search: Searching for estimator parameters的更多相关文章
- 3.2. Grid Search: Searching for estimator parameters
3.2. Grid Search: Searching for estimator parameters Parameters that are not directly learnt within ...
- How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras
Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are n ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Grid search in the tidyverse
@drsimonj here to share a tidyverse method of grid search for optimizing a model's hyperparameters. ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- Extjs4.2 Grid搜索Ext.ux.grid.feature.Searching的使用
背景 Extjs4.2 默认提供的Search搜索,功能还是非常强大的,只是对于国内的用户来说,还是不习惯在每列里面单击好几下再筛选,于是相当当初2.2里面的搜索,更加的实用点,于是在4.2里面实现. ...
- Ext.ux.grid.feature.Searching 解析查询参数,动态产生linq lambda表达式
上篇文章中http://www.cnblogs.com/qidian10/p/3209439.html我们介绍了如何使用Grid的查询组建,而且将查询的参数传递到了后台. 那么我们后台如何介绍参数,并 ...
- Grid Search学习
转自:https://www.cnblogs.com/ysugyl/p/8711205.html Grid Search:一种调参手段:穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性 ...
随机推荐
- (2016北京集训十)【xsy1528】azelso - 概率期望dp
北京集训的题都是好题啊~~(于是我爆0了) 注意到一个重要的性质就是期望是线性的,也就是说每一段的期望步数可以直接加起来,那么dp求出每一段的期望就行了... 设$f_i$表示从$i$出发不回到$i$ ...
- tinymce原装插件源码分析(五)-searchreplace
searchreplace 功能:查找和替换 代码注释见: https://www.xunhanliu.top/static/js/tinymce/plugins/searchreplace/plug ...
- 永远不要在MySQL中使用“utf8”
最近我遇到了一个 bug,我试着通过 Rails 在以“utf8”编码的 MariaDB 中保存一个 UTF-8 字符串,然后出现了一个离奇的错误: Incorrect string value: ‘ ...
- Python 语言中经常有疑惑的地方
*)关于for循环中range(2),i到底是从0还是1开始.特别是在用数组的长度作为range的参数的时候经常会犯糊涂 #首先 >>> for i in range(5): ... ...
- 怎样解除内容审查程序的password
如题:怎样解除内容审查程序的password 在不知道password的情况下.通过改动注冊表解决.点击"開始"→"执行",输入"regedit&qu ...
- Xfce4里添加登录后程序自动运行
Xfce4里添加登录后程序自动运行 (注意该方法在登录桌面环境后才会自动运行程序. 在XUbuntu下测试过, Ubuntu下应该是类似的) 方法1: 找到这个东西, 自动添加一下 方法2: 在 .c ...
- List operations
The + operator concatenates lists: Similarly, the * operator repeats a list a given number of items: ...
- POJ 3122 Pie 二分答案
题意:给你n个派,每个派都是高为一的圆柱体,把它等分成f份,每份的最大体积是多少. 思路: 明显的二分答案题-- 注意π的取值- 3.14159265359 这样才能AC,,, //By Sirius ...
- 200 from memory cache / from disk cache / 304 Not Modified 区别
三者情况有什么区别和联系,什么情况下会发生200 from memory cache 或 200 from disk cache 或 304 Not Modified? 200 from memory ...
- inception - resnet
只有reduction-A是共用的,只是改了其中的几个参数 linear是线性激活. 结构是一样的