The King’s Problem

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 2137    Accepted Submission(s): 763

Problem Description
In the Kingdom of Silence, the king has a new problem. There are N cities in the kingdom and there are M directional roads between the cities. That means that if there is a road from u to v, you can only go from city u to city v,
but can’t go from city v to city u. In order to rule his kingdom more effectively, the king want to divide his kingdom into several states, and each city must belong to exactly one state.What’s more, for each pair of city (u, v), if
there is one way to go from u to v and go from v to u, (u, v) have to belong to a same state.And the king must insure that in each state we can ether go from u to v or go from v to u between every pair of cities (u, v) without passing any city which
belongs to other state.

  Now the king asks for your help, he wants to know the least number of states he have to divide the kingdom into.
 
Input
The first line contains a single integer T, the number of test cases. And then followed T cases.



The first line for each case contains two integers n, m(0 < n <= 5000,0 <= m <= 100000), the number of cities and roads in the kingdom. The next m lines each contains two integers u and v (1 <= u, v <= n), indicating that there is a road going from city u to
city v.
 
Output
The output should contain T lines. For each test case you should just output an integer which is the least number of states the king have to divide into.
 
Sample Input
1
3 2
1 2
1 3
 
Sample Output
2
 

题意:国王要给n个城市进行规划。分成若干个州。有三点要求:1、有边u到v以及有边v到u,则u,v必须划分到同一个州内。

2、一个州内的两点至少要有一方能到达还有一方。3、一个点仅仅能划分到一个州内。问他至少要建多少州



思路:先把能相互两两到达的点用强连通归为一个州,然后再进行缩点。建立新图。然后用匈牙利算法求出最大匹配,答案=强连通求出的联通块-最大匹配(最小路径覆盖=结点数-最大匹配)。

#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
#include <queue>
#define maxn 50000+100
#define maxm 200000+100
using namespace std;
int n, m; struct node {
int u, v, next;
}; node edge[maxm];
int head[maxn], cnt;
int low[maxn], dfn[maxn];
int dfs_clock;
int Stack[maxn], top;
bool Instack[maxn];
int Belong[maxn];
int scc_clock;
vector<int>Map[maxn]; void init(){
cnt = 0;
memset(head, -1, sizeof(head));
} void addedge(int u, int v){
edge[cnt] = {u, v, head[u]};
head[u] = cnt++;
} void getmap(){
scanf("%d%d", &n, &m);
while(m--){
int a, b;
scanf("%d%d", &a, &b);
addedge(a, b);
}
} void Tarjan(int u, int per){
int v;
low[u] = dfn[u] = ++dfs_clock;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u]; i != -1; i = edge[i].next){
int v = edge[i].v;
if(!dfn[v]){
Tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else if(Instack[v])
low[u] = min(low[u], dfn[v]);
}
if(dfn[u] == low[u]){
scc_clock++;
do{
v = Stack[--top];
Instack[v] = false;
Belong[v] = scc_clock;
}
while( v != u);
}
} void find(){
memset(low, 0, sizeof(low));
memset(dfn, 0, sizeof(dfn));
memset(Belong, 0, sizeof(Belong));
memset(Stack, 0, sizeof(Stack));
memset(Instack, false, sizeof(false));
dfs_clock = scc_clock = top = 0;
for(int i = 1; i <= n ; ++i){
if(!dfn[i])
Tarjan(i, i);
}
} void suodian(){
for(int i = 1; i <= scc_clock; ++i)
Map[i].clear();
for(int i = 0; i < cnt; ++i){
int u = Belong[edge[i].u];
int v = Belong[edge[i].v];
if(u != v){
Map[u].push_back(v);
}
}
} int used[maxn], link[maxn]; bool dfs(int x){
for(int i = 0; i < Map[x].size(); ++i){
int y = Map[x][i];
if(!used[y]){
used[y] = 1;
if(link[y] == -1 || dfs(link[y])){
link[y] = x;
return true;
}
}
}
return false;
} void hungary(){
int ans = 0;
memset(link, -1, sizeof(link));
for(int j = 1; j <= scc_clock; ++j){
memset(used, 0, sizeof(used));
if(dfs(j))
ans++;
}
printf("%d\n", scc_clock - ans);
} int main (){
int T;
scanf("%d", &T);
while(T--){
init();
getmap();
find();
suodian();
hungary();
}
return 0;
}

HDU 3861--The King’s Problem【scc缩点构图 &amp;&amp; 二分匹配求最小路径覆盖】的更多相关文章

  1. HDU 3861 The King’s Problem (强连通缩点+DAG最小路径覆盖)

    <题目链接> 题目大意: 一个有向图,让你按规则划分区域,要求划分的区域数最少. 规则如下:1.所有点只能属于一块区域:2,如果两点相互可达,则这两点必然要属于同一区域:3,区域内任意两点 ...

  2. hdu 3861 The King’s Problem trajan缩点+二分图匹配

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  3. HDU 3861 The King’s Problem(强连通+二分图最小路径覆盖)

    HDU 3861 The King's Problem 题目链接 题意:给定一个有向图,求最少划分成几个部分满足以下条件 互相可达的点必须分到一个集合 一个对点(u, v)必须至少有u可达v或者v可达 ...

  4. hdu——3861 The King’s Problem

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  5. HDU 3861 The King’s Problem(强连通分量+最小路径覆盖)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题目大意: 在csdn王国里面, 国王有一个新的问题. 这里有N个城市M条单行路,为了让他的王国 ...

  6. HDU 3861 The King’s Problem 最小路径覆盖(强连通分量缩点+二分图最大匹配)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 最小路径覆盖的一篇博客:https://blog.csdn.net/qq_39627843/ar ...

  7. HDU 3861 The King's Problem(强连通分量缩点+最小路径覆盖)

    http://acm.hdu.edu.cn/showproblem.php?pid=3861 题意: 国王要对n个城市进行规划,将这些城市分成若干个城市,强连通的城市必须处于一个州,另外一个州内的任意 ...

  8. HDU 3861.The King’s Problem 强联通分量+最小路径覆盖

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  9. HDU 3861 The King’s Problem(tarjan连通图与二分图最小路径覆盖)

    题意:给我们一个图,问我们最少能把这个图分成几部分,使得每部分内的任意两点都能至少保证单向连通. 思路:使用tarjan算法求强连通分量然后进行缩点,形成一个新图,易知新图中的每个点内部的内部点都能保 ...

随机推荐

  1. 【Codeforces 258E】 Devu and Flowers

    [题目链接] http://codeforces.com/contest/451/problem/E [算法] 容斥原理 [代码] #include<bits/stdc++.h> usin ...

  2. Mysql数据类型(二)

    字符类型 #官网:https://dev.mysql.com/doc/refman/5.7/en/char.html #注意:char和varchar括号内的参数指的都是字符的长度 #char类型:定 ...

  3. POJ 1200 Hash

    我的hash从来没写对过........ (白学了快一年OI --原来连个hash都没写对过) 但是 但是 今天是一个值得纪念的日子. 看看标题 我竟然在写hash的题解. (好了好了 废话少说) 题 ...

  4. ManualResetEvent和AutoResetEvent的区别,分享来的

    在讨论这个问题之前,我们先了解这样一种观点,线程之间的通信是通过发信号来进行沟通的.(这不是废话) 先来讨论ManualResetEvent,讨论过程中我会穿插一些AutoResetEvent的内容, ...

  5. DB2大数据量优化查询解决方案

    利用DB2表分区的功能对大数据量的表进行分区,可以优化查询. 表分区介绍: 表分区是一种数据组织方案,它根据一列或多列中的值把表数据划分为多个称为数据分区 的存储对象. (我觉得表分区就类似于Wind ...

  6. 《剑指offer 第二版》题解

    剑指Offer 按题号排序 面试题 3:数组中重复的数字 面试题 4:二维数组中的查找 面试题 5:替换空格 面试题 6:从头到尾打印链表 面试题 7:重建二叉树 面试题 8:二叉树的下一个节点 面试 ...

  7. js判断浏览器是android还是ios还是微信浏览器

    第一种方法<script type="text/javascript"> //判断访问终端 var browser={ versions:function(){ var ...

  8. 【Oracle】ORA-00054: resource busy and acquire with NOWAIT specified or timeout expired

    出现此错误的原因是因为事务等待造成的,找出等待的事务,kill即可. 下面是我当时遇到的错误: ---删除表t1时出现错误 SCOTT@GOOD> drop table t1; drop tab ...

  9. C# 5.0新加特性

    1. 异步编程 在.Net 4.5中,通过async和await两个关键字,引入了一种新的基于任务的异步编程模型(TAP).在这种方式下,可以通过类似同步方式编写异步代码,极大简化了异步编程模型.如下 ...

  10. win 2016 添加系统组件注册表,

    Windows Registry Editor Version 5.00 [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\ServerManager\ServicingS ...