RocketMQ(1)-架构原理

RocketMQ是阿里开源的分布式消息中间件,跟其它中间件相比,RocketMQ的特点是纯JAVA实现集群和HA实现相对简单在发生宕机和其它故障时消息丢失率更低

一、RocketMQ专业术语

先讲专业术语的含义,后面会画流程图来更好的去理解它们。

Producer

消息生产者,位于用户的进程内,Producer通过NameServer获取所有Broker的路由信息,根据负载均衡策略选择将消息发到哪个Broker,然后调用Broker接口提交消息。

Producer Group

生产者组,简单来说就是多个发送同一类消息的生产者称之为一个生产者组。

Consumer

消息消费者,位于用户进程内。Consumer通过NameServer获取所有broker的路由信息后,向Broker发送Pull请求来获取消息数据。Consumer可以以两种模式启动,广播(Broadcast)和集群(Cluster)广播模式下,一条消息会发送给所有Consumer,集群模式下消息只会发送给一个Consumer

Consumer Group

消费者组,和生产者类似,消费同一类消息的多个 Consumer 实例组成一个消费者组。

Topic

Topic用于将消息按主题做划分,Producer将消息发往指定的Topic,Consumer订阅该Topic就可以收到这条消息。Topic跟发送方和消费方都没有强关联关系,发送方可以同时往多个Topic投放消息,消费方也可以订阅多个Topic的消息。在RocketMQ中,Topic是一个上逻辑概念。消息存储不会按Topic分开

Message

代表一条消息,使用MessageId唯一识别,用户在发送时可以设置messageKey,便于之后查询和跟踪。一个 Message 必须指定 Topic,相当于寄信的地址。Message 还有一个可选的 Tag 设置,以便消费端可以基于 Tag 进行过滤消息。也可以添加额外的键值对,例如你需要一个业务 key 来查找 Broker 上的消息,方便在开发过程中诊断问题。

Tag

标签可以被认为是对 Topic 进一步细化。一般在相同业务模块中通过引入标签来标记不同用途的消息。

Broker

Broker是RocketMQ的核心模块,负责接收并存储消息,同时提供Push/Pull接口来将消息发送给Consumer。Consumer可选择从Master或者Slave读取数据。多个主/从组成Broker集群,集群内的Master节点之间不做数据交互。Broker同时提供消息查询的功能,可以通过MessageID和MessageKey来查询消息。Borker会将自己的Topic配置信息实时同步到NameServer。

Queue

Topic和Queue是1对多的关系一个Topic下可以包含多个Queue,主要用于负载均衡。发送消息时,用户只指定Topic,Producer会根据Topic的路由信息选择具体发到哪个Queue上。Consumer订阅消息时,会根据负载均衡策略决定订阅哪些Queue的消息。

Offset

RocketMQ在存储消息时会为每个Topic下的每个Queue生成一个消息的索引文件,每个Queue都对应一个Offset记录当前Queue中消息条数

NameServer

NameServer可以看作是RocketMQ的注册中心,它管理两部分数据:集群的Topic-Queue的路由配置;Broker的实时配置信息。其它模块通过Nameserv提供的接口获取最新的Topic配置和路由信息。

  • Producer/Consumer :通过查询接口获取Topic对应的Broker的地址信息
  • Broker : 注册配置信息到NameServer, 实时更新Topic信息到NameServer

二、流程图

我们由简单到复杂的来理解,它的一些核心概念

这个图很好理解,消息先发到Topic,然后消费者去Topic拿消息。只是Topic在这里只是个概念,那它到底是怎么存储消息数据的呢,这里就要引入Broker概念。

2、Topic的存储

​ Topic是一个逻辑上的概念,实际上Message是在每个Broker上以Queue的形式记录。

从上面的图片可以总结下几条结论。

1、消费者发送的Message会在Broker中的Queue队列中记录。
2、一个Topic的数据可能会存在多个Broker中。
3、一个Broker存在多个Queue。
4、单个的Queue也可能存储多个Topic的消息。

也就是说每个Topic在Broker上会划分成几个逻辑队列,每个逻辑队列保存一部分消息数据,但是保存的消息数据实际上不是真正的消息数据,而是指向commit log的消息索引。

Queue不是真正存储Message的地方,真正存储Message的地方是在CommitLog

如图(盗图)

左边的是CommitLog。这个是真正存储消息的地方。RocketMQ所有生产者的消息都是往这一个地方存的。

右边是ConsumeQueue。这是一个逻辑队列。和上文中Topic下的Queue是一一对应的。消费者是直接和ConsumeQueue打交道。ConsumeQueue记录了消费位点,这个消费位点关联了commitlog的位置。所以即使ConsumeQueue出问题,只要commitlog还在,消息就没丢,可以恢复出来。还可以通过修改消费位点来重放或跳过一些消息。

3、部署模型

在部署RocketMQ时,会部署两种角色。NameServer和Broker。如图(盗图)

针对这张图做个说明

1、Product和consumer集群部署,是你开发的项目进行集群部署。
2、Broker 集群部署是为了高可用,因为Broker是真正存储Message的地方,集群部署是为了避免一台挂掉,导致整个项目KO.

那Name SerVer是做什么用呢,它和Product、Consumer、Broker之前存在怎样的关系呢?

先简单概括Name Server的特点

1、Name Server是一个几乎无状态节点,可集群部署,节点之间无任何信息同步。
2、每个Broker与Name Server集群中的所有节点建立长连接,定时注册Topic信息到所有Name Server。
3、Producer与Name Server集群中的其中一个节点(随机选择)建立长连接,定期从Name Server取Topic路由信息。
4、Consumer与Name Server集群中的其中一个节点(随机选择)建立长连接,定期从Name Server取Topic路由信息。

这里面最核心的是每个Broker与Name Server集群中的所有节点建立长连接这样做好处多多。

1、这样可以使Name Server之间可以没有任何关联,因为它们绑定的Broker是一致的。

2、作为Producer或者Consumer可以绑定任何一个Name Server 因为它们都是一样的。

三、详解Broker

1、Broker与Name Server关系

1)连接 单个Broker和所有Name Server保持长连接。

2)心跳

心跳间隔:每隔30秒向所有NameServer发送心跳,心跳包含了自身的Topic配置信息。

心跳超时:NameServer每隔10秒,扫描所有还存活的Broker连接,若某个连接2分钟内没有发送心跳数据,则断开连接。

3)断开:当Broker挂掉;NameServer会根据心跳超时主动关闭连接,一旦连接断开,会更新Topic与队列的对应关系,但不会通知生产者和消费者。

2、 负载均衡

一个Topic分布在多个Broker上,一个Broker可以配置多个Topic,它们是多对多的关系。

如果某个Topic消息量很大,应该给它多配置几个Queue,并且尽量多分布在不同Broker上,减轻某个Broker的压力。

3 、可用性

由于消息分布在各个Broker上,一旦某个Broker宕机,则该Broker上的消息读写都会受到影响。

所以RocketMQ提供了Master/Slave的结构,Salve定时从Master同步数据,如果Master宕机,则Slave提供消费服务,但是不能写入消息,此过程对应用透明,由RocketMQ内部解决。

有两个关键点:

思考1一旦某个broker master宕机,生产者和消费者多久才能发现?

受限于Rocketmq的网络连接机制,默认情况下最多需要30秒,因为消费者每隔30秒从nameserver获取所有topic的最新队列情况,这意味着某个broker如果宕机,客户端最多要30秒才能感知。

思考2 master恢复恢复后,消息能否恢复。

消费者得到Master宕机通知后,转向Slave消费,但是Slave不能保证Master的消息100%都同步过来了,因此会有少量的消息丢失。但是消息最终不会丢的,一旦Master恢复,未同步过去的消息会被消费掉。

四 Consumer (消费者)

1 、Consumer与Name Server关系

1)连接 : 单个Consumer和一台NameServer保持长连接,如果该NameServer挂掉,消费者会自动连接下一个NameServer,直到有可用连接为止,并能自动重连。

2)心跳: 与NameServer没有心跳

3)轮询时间 : 默认情况下,消费者每隔30秒从NameServer获取所有Topic的最新队列情况,这意味着某个Broker如果宕机,客户端最多要30秒才能感知。

2、 Consumer与Broker关系

1)连接 :单个消费者和该消费者关联的所有broker保持长连接。

3、 负载均衡

集群消费模式下,一个消费者集群多台机器共同消费一个Topic的多个队列,一个队列只会被一个消费者消费。如果某个消费者挂掉,分组内其它消费者会接替挂掉的消费者继续消费。

五、 Producer(生产者)

1、 Producer与Name Server关系

1)连接 单个Producer和一台NameServer保持长连接,如果该NameServer挂掉,生产者会自动连接下一个NameServer,直到有可用连接为止,并能自动重连。

2)轮询时间 默认情况下,生产者每隔30秒从NameServer获取所有Topic的最新队列情况,这意味着某个Broker如果宕机,生产者最多要30秒才能感知,在此期间,

发往该broker的消息发送失败。

3)心跳 与nameserver没有心跳

2、 与broker关系

连接 单个生产者和该生产者关联的所有broker保持长连接。

参考

1、十分钟入门RocketMQ

2、RocketMQ nameserver、broker之间的关系

3、RocketMQ-NameServer

只要自己变优秀了,其他的事情才会跟着好起来(中将8)

RocketMQ(1)-架构原理的更多相关文章

  1. 你懂RocketMQ 的架构原理吗?

    前言 前面我们跟大家聊了聊什么是消息中间件,以及哪些场景使用哪些消息中间件更加合适. 我们了解到RocketMQ是java语言开发的,我们能更深入的阅读源码了解它的底层原理,而且它具有优秀的消息中间件 ...

  2. RocketMQ(1)---架构原理及环境搭建

    一.架构简述 RocketMQ阿里开源的一个分布式消息传递和流媒体平台,具有低延迟,高性能和可靠性, 万亿级容量和灵活的可伸缩性.跟其它中间件相比,RocketMQ的特点是纯JAVA实现,在发生宕机和 ...

  3. RocketMQ架构原理解析(四):消息生产端(Producer)

    RocketMQ架构原理解析(一):整体架构 RocketMQ架构原理解析(二):消息存储(CommitLog) RocketMQ架构原理解析(三):消息索引(ConsumeQueue & I ...

  4. RocketMQ架构原理解析(一):整体架构

    RocketMQ架构原理解析(一):整体架构 RocketMQ架构原理解析(二):消息存储(CommitLog) RocketMQ架构原理解析(三):消息索引(ConsumeQueue & I ...

  5. 一张图进阶 RocketMQ - 整体架构

    前 言 三此君看了好几本书,看了很多遍源码整理的 一张图进阶 RocketMQ 图片链接,关于 RocketMQ 你只需要记住这张图!如果你第一次看到这个系列,墙裂建议你打开链接.觉得不错的话,记得点 ...

  6. NET/ASP.NET Routing路由(深入解析路由系统架构原理)(转载)

    NET/ASP.NET Routing路由(深入解析路由系统架构原理) 阅读目录: 1.开篇介绍 2.ASP.NET Routing 路由对象模型的位置 3.ASP.NET Routing 路由对象模 ...

  7. Hbase的架构原理、核心概念

    Hbase的架构原理.核心概念 1.Hbase的表.行.列.列族 2.核心组件: Table和region Table在行的方向上分割为多个HRegion, 一个region由[startkey,en ...

  8. [Spark内核] 第38课:BlockManager架构原理、运行流程图和源码解密

    本课主题 BlockManager 运行實例 BlockManager 原理流程图 BlockManager 源码解析 引言 BlockManager 是管理整个Spark运行时的数据读写的,当然也包 ...

  9. Istio入门实战与架构原理——使用Docker Compose搭建Service Mesh

    本文将介绍如何使用Docker Compose搭建Istio.Istio号称支持多种平台(不仅仅Kubernetes).然而,官网上非基于Kubernetes的教程仿佛不是亲儿子,写得非常随便,不仅缺 ...

随机推荐

  1. 手推机器学习公式(一) —— BP 反向传播算法

    方便起见,本文仅以三层的神经网络举例. f(⋅):表示激励函数 xi:表示输入层: yj:表示中间的隐层: yj=f(netj) netj=∑i=0nvijxi ok:表示输出层,dk 则表示期望输出 ...

  2. 矿Java开发学习之旅------>Java排序算法经典的二分法插入排序

    一.折半插入排序(二分插入排序) 将直接插入排序中寻找A[i]的插入位置的方法改为採用折半比較,就可以得到折半插入排序算法.在处理A[i]时,A[0]--A[i-1]已经按关键码值排好序.所谓折半比較 ...

  3. CUDA中的常量内存__constant__

    GPU包含数百个数学计算单元,具有强大的处理运算能力,可以强大到计算速率高于输入数据的速率,即充分利用带宽,满负荷向GPU传输数据还不够它计算的.CUDA C除全局内存和共享内存外,还支持常量内存,常 ...

  4. Gamma 函数与exponential power distribution (指数幂分布)

    1. Γ(⋅) 函数 Γ(α)=∫∞0tα−1e−tdt 可知以下基本性质: Γ(α+1)=αΓ(α) Γ(1)=1 ⇒ Γ(n+1)=n! Γ(12)=π√ 2. 指数幂分布(exponential ...

  5. 矩阵十点【两】 poj 1575 Tr A poj 3233 Matrix Power Series

    poj 1575  Tr A 主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 题目大意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的 ...

  6. 【翻译自mos文章】对于每个文件的 file.id and file.incarnation number,重命名文件别名

    对于每个文件的 file.id and file.incarnation number,重命名文件别名 參考原文: Rename Alias of Datafile as Per file.id an ...

  7. Mac OS X通过结合80port

    Mac OS X 由于要绑定80port须要ROOT权限, 可是假设用root权限启动eclipse或tomcat又会造成, 启动创建的各类文件是root的,普通用户无法删除. 为此. 我们能够通过p ...

  8. VoIP应用在Ubuntu 14.04下编译FFmpeg libX264及PJSIP

    PJSIP是一个开源的SIP协议栈.它支持多种SIP的扩展功能,可说算是最目前流行的SIP协议栈之一了.  它实现了SIP.SDP.RTP.STUN.TURN和ICE.PJSIP作为基于SIP的一个多 ...

  9. Ubuntu 15.04 clang++ 3.6 编译boost 1.59/1.55

    Ubuntu 15.04已经可以直接通过apt-get insall 安装clang 3.6, 并且预装的gcc版本是4.9.2.这些安装过程在这里介绍. 首先下载boost源码 wget -O bo ...

  10. XF 通过判断平台加载不同的图片

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...