紫书 例题 10-17 UVa 1639(数学期望+对数保存精度)
设置最后打开的是盒子1, 另外一个盒子剩下i个
那么在这之前打开了n + n - i次盒子
那么这个时候的概率是C(2 * n - i, n) p ^ (n+1) (1-p)^ (n - i)
那么反过来最后打开的是盒子2, 那么概率是C(2 * n - i, n) p ^ (n-i) (1-p)^ (n +1)
那么当前的概率就是两个加起来,然后乘以权值,即i就可以了
所以枚举所有的i加起来就好了。
但这样会损失很多精度, 所以我们可以用对数
也就是说算的时候先取对数来算,后来再取回去
不要忘记乘上权值
另外组合数取对数可以先预处理对数和,详情见代码
#include<cstdio>
#include<cmath>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 412345;
long double logF[MAXN];
long double logc(int n, int m)
{
return logF[n] - logF[m] - logF[n-m];
}
int main()
{
REP(i, 1, MAXN) logF[i] = logF[i-1] + log(i);
int n, kase = 0;
double p;
while(~scanf("%d%lf", &n, &p))
{
double ans = 0;
REP(i, 0, n + 1)
{
long double c = logc(2 * n - i, n);
long double v1 = c + (n + 1) * log(p) + (n - i) * log(1 - p);
long double v2 = c + (n - i) * log(p) + (n + 1) * log(1 - p);
ans += i * (exp(v1) + exp(v2));
}
printf("Case %d: %.6lf\n", ++kase, ans);
}
return 0;
}
紫书 例题 10-17 UVa 1639(数学期望+对数保存精度)的更多相关文章
- uva 1639 Candy (对数处理精度)
https://vjudge.net/problem/UVA-1639 有两个盒子各有n(n≤2*10 5 )个糖,每天随机选一个(概率分别为p,1-p),然后吃一颗糖. 直到有一天,打开盒子一看,没 ...
- 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流)
这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当 ...
- 紫书 例题 10-16 UVa 12230(数学期望)
感觉数学期望的和化学里面求元素的相对原子质量的算法是一样的 就是同位素的含量乘上质量然后求和得出 这道题因为等待时机是0到2*l/v均匀分配的,所以平均时间就是l/v 再加上过河的l/v, 最后加上步 ...
- 紫书 例题 9-5 UVa 12563 ( 01背包变形)
总的来说就是价值为1,时间因物品而变,同时注意要刚好取到的01背包 (1)时间方面.按照题意,每首歌的时间最多为t + w - 1,这里要注意. 同时记得最后要加入时间为678的一首歌曲 (2)这里因 ...
- 紫书 例题8-3 UVa 1152(中途相遇法)
这道题要逆向思维, 就是求出答案的一部分, 然后反过去去寻找答案存不存在. 其实很多其他题都用了这道题目的方法, 自己以前都没有发现, 这道题专门考这个方法.这个方法可以没有一直往下求, 可以省去很多 ...
- 紫书 例题8-12 UVa 12627 (找规律 + 递归)
紫书上有很明显的笔误, 公式写错了.g(k, i)的那个公式应该加上c(k-1)而不是c(k).如果加上c(k-1)那就是这一次 所有的红气球的数目, 肯定大于最下面i行的红气球数 我用的是f的公式, ...
- 紫书 例题8-4 UVa 11134(问题分解 + 贪心)
这道题目可以把问题分解, 因为x坐标和y坐标的答案之间没有联系, 所以可以单独求两个坐标的答案 我一开始想的是按照左区间从小到大, 相同的时候从右区间从小到大排序, 然后WA 去uDebug找了数据 ...
- 紫书 例题8-17 UVa 1609 (构造法)(详细注释)
这道题用构造法, 就是自己依据题目想出一种可以得到解的方法, 没有什么规律可言, 只能根据题目本身来思考. 这道题的构造法比较复杂, 不知道刘汝佳是怎么想出来的, 我想的话肯定想不到. 具体思路紫书上 ...
- uva 11762 数学期望+记忆化搜索
题目大意:给一个正整数N,每次可以在不超过N的素数中随机选择一个P,如果P是N的约数,则把N变成N/p,否则N不变,问平均情况下需要多少次随机选择,才能把N变成1? 分析:根据数学期望的线性和全期望公 ...
随机推荐
- js小知识 delete操作符
说明:delete操作符用于删除对象的某个属性. 语法: delete object.property //删除 对象.属性 delete object['property'] //删除 对象['属性 ...
- HDU 1171 Big Event in HDU【01背包】
题意:给出n个物品的价值和数目,将这一堆物品分给A,B,问怎样分使得两者的价值最接近,且A的要多于B 第一次做的时候,没有思路---@_@ 因为需要A,B两者最后的价值尽可能接近,那么就可以将背包的容 ...
- 复制excel表,往excel表中写入数据
import java.io.FileInputStream;import java.io.FileOutputStream;import java.io.IOException;import jav ...
- 前端换行显示,后端返回<br>
- Mint-UI 没有样式?
如果用mint-ui组件,如toast没有样式,是因为没有映入全局样式和导入MintUI 方法如下: 1.安装 npm install mint-ui -S -S表示 --save 2.在main.j ...
- BZOJ 2154/2693 Crash的数字表格/jzptab (莫比乌斯反演)
题目大意:求$\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$的和 易得$\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{ij}{gcd(i,j)}$ 套 ...
- list 分页
package com.jsz.peini.common.util; import java.util.ArrayList; import java.util.List; public class S ...
- jQuery第一课 加载页面弹出一个对话框
<script type="text/javascript"> $(document).ready(function(){ alert("欢迎收看:" ...
- caioj 1204 Catalan数(模板)
题目中对卡特兰数的总结很不错 以下copy自题目 Catalan数列:1,1,2,5,14,42,(前面几个要背) 即 h(0)=1,h(1)=1,h(2)=2,h(3)=5...公式:h(n)=C( ...
- ZOJ 1825 Compound Words
Compound Words Time Limit: 5000ms Memory Limit: 32768KB This problem will be judged on ZJU. Original ...