之所以专门定义两个新的概念,在于它们特殊的形式,带来的特别的形式。

1. Toeplitz matrix

  • 对角为常数;

n×n 的矩阵 A 是 Toepliz 矩阵当且仅当,对于 Ai,j 有:

Ai,j=Ai+1,j+1=ai−j
⎡⎣⎢⎢⎢⎢⎢⎢afghibafghcbafgdcbafedcba⎤⎦⎥⎥⎥⎥⎥⎥

.

i−j 表示行号减去列号,对于 n×n 的 Toeplize 矩阵共 2n−1 个不同的值,即 a1−n,a2−n,…,a−1,0,a1,…,an−1。

⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢a0a1a2⋮⋮an−1a−1a0a1⋱…a−2a−1⋱⋱⋱……⋱⋱⋱a1a2…⋱a−1a0a1a−(n−1)⋮⋮a−2a−1a0⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

2. Toeplize 矩阵与卷积和傅里叶变换到关系

长度为 n 的信号 x,与长度为 m 的卷积核 h,二者之间的卷积可通过矩阵乘法的方式计算:

y=h∗x=⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢h1h2h3⋮hm−1hm00⋮00h1h2h3⋮hm−1hm0⋮0……………⋮……⋮00⋮0h1h2⋮hm−2hm−1hm…0⋮00h1h2⋮hm−2hm−1hm⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎢⎢⎢x1x2x3⋮xn⎤⎦⎥⎥⎥⎥⎥⎥⎥

同样地根据卷积的性质,也有:

yT=[h1h2h3…hm−1hm]⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢x100⋮00x2x10⋮……x3x2x1⋮00…x3x2⋮00xn…x3⋮x100xn………x100xn⋮xn−2…000⋮xn−1xn−2…………xnxn−10000⋮xn⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥.
  • 由左边的 Toeplize 矩阵可知,Toeplize 矩阵不必是方阵;下面来看该矩阵的维度信息,如下图所示:

    上面在 wikipedia 中复制过来的矩阵信息其实是当 n<m 时的情形,且 n=m−1。

3. Circulant matrix

是一种特殊的 Toeplitz 矩阵。

如下为一个 Circulant matrix 的基本形式:

C=⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢c0c1⋮cn−2cn−1cn−1c0c1cn−2…cn−1c0⋱…c2⋱⋱c1c1c2⋮cn−1c0⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥.

在 Toeplize 的基础上,Circulant 进一步的要求是每一个行向量,是前一个行向量的循环右移一个元素。

Toeplitz matrix 与 Circulant matrix的更多相关文章

  1. Leetcode 54. Spiral Matrix & 59. Spiral Matrix II

    54. Spiral Matrix [Medium] Description Given a matrix of m x n elements (m rows, n columns), return ...

  2. 54. Spiral Matrix && 59. Spiral Matrix II

    Given a positive integer n, generate a square matrix filled with elements from 1 to n2 in spiral ord ...

  3. LeetCode 1284. Minimum Number of Flips to Convert Binary Matrix to Zero Matrix (最少翻转次数将二进制矩阵全部置为0)

    给一个矩阵mat,每个格子都是0或1,翻转一个格子会将该格子以及相邻的格子(有共同边)全部翻转(0变为1,1变为0) 求问最少需要翻转几次将所有格子全部置为0. 这题的重点是数据范围,比赛结束看了眼数 ...

  4. 【leetcode】1284. Minimum Number of Flips to Convert Binary Matrix to Zero Matrix

    题目如下: Given a m x n binary matrix mat. In one step, you can choose one cell and flip it and all the ...

  5. 2018牛客网暑期ACM多校训练营(第九场)A -Circulant Matrix(FWT)

    分析 大佬说看样例就像和卷积有关. 把题目化简成a*x=b,这是个xor的FWT. FWT的讲解请看:https://www.cnblogs.com/cjyyb/p/9065615.html 那么要求 ...

  6. Nowcoder Circulant Matrix ( FWT )

    题目链接 题意 : 给你一个a数组和b数组,构造出A[i][j]矩阵(A[i][j] = a[i xor j]) 给出等式 A * x = b ( mod p ) n等于4的时候有: A[0][0]* ...

  7. hdu 2686 Matrix && hdu 3367 Matrix Again (最大费用最大流)

    Matrix Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  8. Matrix.LookAtLH()和Matrix.LookAtRH()所表达的涵义

    function lookAtLH(eye:Vector3D, at:Vector3D, up:Vector3D) 一个摄像机矩阵可有由三个部分组成:摄像机位置.目标位置以及摄像机上下方.对应的就是上 ...

  9. Matrix: android 中的Matrix (android.graphics.Matrix) (转)

    本篇博客主要讲解一下如何处理对一个Bitmap对象进行处理,包括:缩放.旋转.位移.倾斜等.在最后将以一个简单的Demo来演示图片特效的变换. 1. Matrix概述 对于一个图片变换的处理,需要Ma ...

随机推荐

  1. windows下python3 使用cx_Oracle,xlrd插件进行excel数据清洗录入

    我们在做数据分析,清洗的过程中,很多时候会面对各种各样的数据源,要针对不同的数据源进行清洗,入库的工作.当然python这个语言,我比较喜欢,开发效率高,基本上怎么写都能运行,而且安装配置简单,基本上 ...

  2. iOS菜鸟成长笔记(2)——网易彩票练习

    距离上一篇<第一个iOS应用>已经有一个多月了,今天来和大家一起学习和分享一下一个小练习<网易彩票> 首先我们向storyboard中拖入一个TabBarController和 ...

  3. Linux 下易用的光盘镜像管理工具(虚拟光驱软件)转载

    作者: Frazer Kline | 2014-11-23 11:07   评论: 4 收藏: 4 分享: 10 磁盘镜像包括了整个磁盘卷的文件或者是全部的存储设备的数据,比如说硬盘,光盘(DVD,C ...

  4. inception - resnet

    只有reduction-A是共用的,只是改了其中的几个参数 linear是线性激活. 结构是一样的

  5. Xshell查看日志的基础使用

    2018\11\26 下载安装不多说,官网免费版即可,附上链接:https://www.netsarang.com/products/xsh_overview.html 打开后新建连接,输入主机ip即 ...

  6. docker常用命令,学习笔记

    - 常用命令 https://docs.docker.com images > docker images # 查看本地镜像 > docker images -a # 查看所(含中间镜像层 ...

  7. Spring学习详解(1)——Spring入门详解

    一:spring的基本用法: 1,关于spring容器: spring容器是Spring的核心,该 容器负责管理spring中的java组件, ApplicationContext ctx  = ne ...

  8. 洛谷 P2104 二进制

    P2104 二进制 题目描述 小Z最近学会了二进制数,他觉得太小的二进制数太没意思,于是他想对一个巨大二进制数做以下 4 种基础运算: 运算 1:将整个二进制数加 1 运算 2:将整个二进制数减 1 ...

  9. 7. java操作MongoDB,采用_id查询

    转自:https://www.2cto.com/database/201704/633262.html mongodb命令行_id查询方法 直接用ObjectId() db.getCollection ...

  10. hibernate generator id

    以下内容整理自网络 “assigned” 主键由外部程序负责生成,在   save()   之前指定一个.  “hilo” 通过hi/lo   算法实现的主键生成机制,需要额外的数据库表或字段提供高位 ...