Football

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5620   Accepted: 2868

Description

Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.

Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.

Input

The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead of float.

Output

The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.

Sample Input

2
0.0 0.1 0.2 0.3
0.9 0.0 0.4 0.5
0.8 0.6 0.0 0.6
0.7 0.5 0.4 0.0
-1

Sample Output

2

Hint

In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:

P(2 wins)  P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4)
p21p34p23 + p21p43p24
= 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396.

The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.

Source

 
/*
因为2^n个球队 需要n大轮比赛才能决定冠军!
因此,可以用dp[i][j],表示第i大轮比赛,j球队赢得概率!
先遍历比赛轮数i,在遍历j,在遍历k,k表示j可以战胜的球队!
当判断j和k相邻时(可以打比赛),
dp[i][j] +=dp[i-1][j] * dp[i-1][k] * p[j][k];
表示在上一轮中,j和k都存活了下来,并且在这一轮中j战胜了k。
这样就解决了!
那么 如何判断两个球队是否相邻呢!
用到了^运算符,有一个性质 (2n) ^ (1) = 2n+1; (2n+1) ^ (1) = 2n
因此先给每一个数 >> (i-1),在进行^运算!就可以判断是否相邻了。
这个说不太好说明,写一下就很明了了!
*/
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std; double dp[][];//dp[i][j]表示在第i场比赛中j胜出的概率
double p[][];
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
if(n==-)break;
memset(dp,,sizeof(dp));
for(int i=;i<(<<n);i++)
for(int j=;j<(<<n);j++)
scanf("%lf",&p[i][j]);
//cin>>p[i][j];
for(int i=;i<(<<n);i++)dp[][i]=;
for(int i=;i<=n;i++)//2^n个人要进行n场比赛
{
for(int j=;j<(<<n);j++)
{
int t=j/(<<(i-));
t^=;
dp[i][j]=;
for(int k=t*(<<(i-));k<t*(<<(i-))+(<<(i-));k++)
dp[i][j]+=dp[i-][j]*dp[i-][k]*p[j][k];
}
}
int ans;
double temp=;
for(int i=;i<(<<n);i++)
{
if(dp[n][i]>temp)
{
ans=i;
temp=dp[n][i];
}
}
printf("%d\n",ans+);
}
return ;
}

poj3071Football(概率期望dp)的更多相关文章

  1. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  2. 【bzoj4832】[Lydsy2017年4月月赛]抵制克苏恩 概率期望dp

    题目描述 你分别有a.b.c个血量为1.2.3的奴隶主,假设英雄血量无限,问:如果对面下出一个K点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输入 输入包含多局游戏. 第一行包含一个整数 T (T ...

  3. 【loj6191】「美团 CodeM 复赛」配对游戏 概率期望dp

    题目描述 n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 输入 一行一个正整数 n . 输出 一行一个实数,表示期望剩下的人数, ...

  4. Codeforces - 1264C - Beautiful Mirrors with queries - 概率期望dp

    一道挺难的概率期望dp,花了很长时间才学会div2的E怎么做,但这道题是另一种设法. https://codeforces.com/contest/1264/problem/C 要设为 \(dp_i\ ...

  5. 概率期望dp

    对于概率dp,我一直都弄得不是特别明白,虽然以前也有为了考试去突击过,但是终究还是掌握得不是很好,所以决定再去学习一遍,把重要的东西记录下来. 1.hdu4405 Description 在一个 \( ...

  6. Codeforces 908 D.New Year and Arbitrary Arrangement (概率&期望DP)

    题目链接:New Year and Arbitrary Arrangement 题意: 有一个ab字符串,初始为空. 用Pa/(Pa+Pb)的概率在末尾添加字母a,有 Pb/(Pa+Pb)的概率在末尾 ...

  7. [BZOJ4832]抵制克苏恩(概率期望DP)

    方法一:倒推,最常规的期望DP.f[i][a][b][c]表示还要再攻击k次,目前三种随从个数分别为a,b,c的期望攻击英雄次数,直接转移即可. #include<cstdio> #inc ...

  8. LightOJ 1030 Discovering Gold (概率/期望DP)

    题目链接:LightOJ - 1030 Description You are in a cave, a long cave! The cave can be represented by a \(1 ...

  9. 【POJ 2096】Collecting Bugs 概率期望dp

    题意 有s个系统,n种bug,小明每天找出一个bug,可能是任意一个系统的,可能是任意一种bug,即是某一系统的bug概率是1/s,是某一种bug概率是1/n. 求他找到s个系统的bug,n种bug, ...

随机推荐

  1. 【LaTeX】对xelatex的中英文设置不同的字体

    不建议用Ctex套装,不好用. 用MixTex+TexStudio! XeTeX处理中文非常方便,不需要任何设置,就能够使用系统中安装的TrueType和OpenType字体. MikTeX2.7中已 ...

  2. (转) Arcgis4js实现链家找房的效果

    http://blog.csdn.net/gisshixisheng/article/details/71009901 概述 买房的各位亲们不知是否留意过链家的"地图找房",这样的 ...

  3. 解决 The file will have its original line endings in your working directory

    首先出现这个问题主要原因是:我们从别人github地址上通过git clone下载下来,而又想git push到我们自己的github上,那么就会出现上面提示的错误信息 此时需要执行如下代码: git ...

  4. UpdateData

    UpdateData 类似于C语言的scanf printf函数 管理控件与关联变量之间的数据更新. updatedata(true)把界面输入的数值更新到关联变量中,updatedata(false ...

  5. u-boot常用命令

    查看ip地址等信息 print tftp相关 设置ip地址 set ipaddr 192.168.1.5 设置tftp所在电脑ip set serverip 192.168.1.8 最后必须输入sav ...

  6. 网络爬虫 robots协议 robots.txt

    网络爬虫 网络爬虫是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是搜索引擎的重要组成.传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上 ...

  7. Django - orm外键操作

    1.orm外键操作 创建外键: 备注:ForeignKey两个参数,1个为关联的表名,1个为关联的字段名: 在django2.0后,定义外键和一对一关系的时候需要加on_delete选项,此参数为了避 ...

  8. 爬虫之cookie

    什么是cookie: 在网站中,http请求是无状态的.也就是说即使第一次和服务器连接后并且登录成功后,第二次请求服务器依然不能知道当前请求是哪个用户.cookie的出现就是为了解决这个问题,第一次登 ...

  9. 【XSY3413】Lambda - 造计算机初步——邱奇-图灵论题与lambda演算

    题意: 关于邱奇-图灵论题的一点思考 这道题起源于计算机科学史上一个非常著名的问题——邱奇-图灵论题,这个论题是可计算性理论的基石,关于它的思考与证明几乎贯穿了整个计算机科学史,涵盖了数学.算法理论. ...

  10. Emacs的undo与redo

    在Emacs的手册16.1节中有这样一句话, Any command other than an undo command breaks the sequence of undo commands. ...