Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 1101  Solved: 851
[Submit][Status][Discuss]

Description

Input

n很大,为了避免读入耗时太多,
输入文件只有5个整数参数n, A, B, C, a1,
由上交的程序产生数列a。
下面给出pascal/C/C++的读入语句和产生序列的语句(默认从标准输入读入): 
// for pascal 
readln(n,A,B,C,q[1]); 
for i:=2 to n do q[i] := (int64(q[i-1]) * A + B) mod 100000001; 
for i:=1 to n do q[i] := q[i] mod C + 1; 
 
// for C/C++ 
scanf("%d%d%d%d%d",&n,&A,&B,&C,a+1); 
for (int i=2;i<=n;i++) a[i] = ((long long)a[i-1] * A + B) % 100000001; 
for (int i=1;i<=n;i++) a[i] = a[i] % C + 1; 
选手可以通过以上的程序语句得到n和数列a(a的元素类型是32位整数),
n和a的含义见题目描述。
 2≤n≤10000000, 0≤A,B,C,a1≤100000000

Output

输出一个实数,表示gx期望做对的题目个数,保留三位小数。

Sample Input

3 2 0 4 1

Sample Output

1.167
【样例说明】
a[] = {2,3,1}
正确答案 gx的答案 做对题目 出现概率
{1,1,1} {1,1,1} 3 1/6
{1,2,1} {1,1,2} 1 1/6
{1,3,1} {1,1,3} 1 1/6
{2,1,1} {1,2,1} 1 1/6
{2,2,1} {1,2,2} 1 1/6
{2,3,1} {1,2,3} 0 1/6
共有6种情况,每种情况出现的概率是1/6,gx期望做对(3+1+1+1+1+0)/6 = 7/6题。(相比之下,lc随机就能期望做对11/6题)

HINT

 

Source

时隔19260817年之后第一次自己做出BZOJ的题目QWQ

我的思路:

首先对于每一个位置的期望都是独立的

然后就可以凑推出这个位置和它前一个位置的贡献

为$min(1/a[i],1/a[pre(i)])$

其实挺显然的

#include<cstdio>
#include<cstring>
#include<algorithm>
//#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin),p1==p2)?EOF:*p1++)
using namespace std;
const int MAXN=1e7+;
char buf[<<],*p1=buf,*p2=buf;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int N,A,B,C;
int a[MAXN];
int pre(int x)
{
return x==?N:x-;
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#endif
N=read(),A=read(),B=read(),C=read(),a[]=read();
for (int i=;i<=N;i++) a[i] = ((long long)a[i-] * A + B) % ;
for (int i=;i<=N;i++) a[i] = a[i] % C + ;
double ans=;
for(int i=;i<=N;i++)
ans+=(double)min((double)/a[i],(double)/a[pre(i)]); printf("%.3lf",ans);
return ;
}

BZOJ2134: 单选错位(期望乱搞)的更多相关文章

  1. bzoj2134单选错位

    bzoj2134单选错位 题意: 试卷上n道选择题,每道分别有ai个选项.某人全做对了,但第i道题的答案写在了第i+1道题的位置,第n道题答案写在第1题的位置.求期望能对几道.n≤10000000 题 ...

  2. BZOJ_2134_单选错位——期望DP

    BZOJ_2134_单选错位——期望DP 题意: 分析:设A为Ai ∈ [1,ai+1] 的概率,B为Ai = A(imodn+1)的概率显然P(A|B) = 1,那么根据贝叶斯定理P(B) = P( ...

  3. BZOJ 2134: 单选错位( 期望 )

    第i个填到第i+1个的期望得分显然是1/max(a[i],a[i+1]).根据期望的线性性, 我们只需将每个选项的期望值累加即可. ---------------------------------- ...

  4. Bzoj 2134: [国家集训队2011]单选错位(期望)

    2134: 单选错位 Time Limit: 10 Sec Memory Limit: 259 MB Description Input n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A ...

  5. 【bzoj2134】单选错位 期望

    题目描述 输入 n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A, B, C, a1,由上交的程序产生数列a.下面给出pascal/C/C++的读入语句和产生序列的语句(默认从标准输入读 ...

  6. BZOJ2134——单选错位

    1.题意:这就是说考试的时候抄串了一位能对几个(雾) 2.分析:这是一个期望问题,期望就是平均,E(a+b)=E(a)+E(b),所以我们直接算出每个点能对几个就好,那么就是1/max(a[i],a[ ...

  7. 【BZOJ】2134: 单选错位 期望DP

    [题意]有n道题,第i道题有ai个选项.把第i道题的正确答案填到第i+1道题上(n填到1),问期望做对几道题.n<=10^7. [算法]期望DP [题解]正确答案的随机分布不受某道题填到后面是否 ...

  8. 洛谷P1297 单选错位——期望

    题目:https://www.luogu.org/problemnew/show/P1297 读懂题后就变得很简单啦: 对于一个问题和它的下一个问题,我们考虑: 设上一个问题有 a 个选项,下一个问题 ...

  9. BZOJ2134: 单选错位

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2134 题解:因为每个答案之间是互不影响的,所以我们可以挨个计算. 假设当前在做 i 题目,如果 ...

随机推荐

  1. HTML DIV中文字自动换行 , 顶部对齐

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <meta ht ...

  2. 安卓 九宫格 GridView 的表格布局

    首先,请大家理解一下“迭代显示”这个概念,这个好比布局嵌套,我们在一个大布局里面重复的放入一些布局相同的小布局,那些重复的部分是由图片和文字组成的小控件,图片在上方,文字在下方,之后我们只需要把这些小 ...

  3. 【Android】进程间通信IPC——AIDL

    AIDL官网定义AIDL(Android 接口定义语言)与您可能使用过的其他 IDL 类似. 您可以利用它定义客户端与服务使用进程间通信 (IPC) 进行相互通信时都认可的编程接口. 在 Androi ...

  4. SUSE 11 SP3 搭建weblogic服务

    环境的搭建和业务需求相关,仅供参考 环境: SUSE 11 SP3 安装步骤 创建一个weblogic组 创建一个用户名为weblogic的用户, 创建相关目录 上传jdk,脚本等 安装 创建用户及其 ...

  5. Mysql [Err] 1118 - Row size too large. The maximum row size for the used table type, not counting BLOBs, is 65535.

    对于越来越多的数据,数据库的容量越来越大,压缩也就越来越常见了.在我的实际工作中进行过多次压缩工作,也遇到多次问题,在此和大家分享一下. 首先,我们先说说怎么使用innodb的压缩. 第一,mysql ...

  6. eas之执行sql的方式

    客户端:    1. 有返回集合:查询     //查询出DB中所有该字段的值,与其进行比较,若有相同的则报错      String sql="select CFWuliaoCode fr ...

  7. 使用正则表达式爬取500px上的图片

    网址:https://500px.com/seanarcher,seanarcher是一个up主的名字 打开这个网址,会发现有好多图片,具体到每一个图片的url地址 https://500px.com ...

  8. 2.Git可视化操作

    1.在本地新建版本库 首先,我们打开Git GUI是这样的一个界面,选择第一项,新建版本库. 然后选择你需要进行版本管理的项目路径,我选择了一个LoginDemo的项目. 当你创建了版本库的时候,你可 ...

  9. vue+ElementUI 日期选择器 获取时间戳

    <div class="block"> <span class="demonstration">daterange</span&g ...

  10. 【 Codeforces Round #519 by Botan Investments B】Lost Array

    [链接] 我是链接,点我呀:) [题意] [题解] 枚举k 不难根据a得到x[0..k-1] 然后再根据a[k+1..n]来验证一下得到的x是否正确就好. [代码] #include <bits ...