先上题目:

Domestic Networks
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 732   Accepted: 204   Special Judge

Description

Alex is a system administrator of Domestic Networks Inc. His network connects apartments and spans over multiple buildings.

The network expands and Alex has to design a new network segment. He has a map that shows apartments to connect and possible links. Each link connects two apartments and for each possible link its length is known. The goal is to make all apartments connected (possibly through other apartments).

Domestic Networks Inc. buys cable in the nearest cable shop. Unfortunately, shop sells only category 5 and 6 cables at price of p5 and p6 rubles per meter respectively. Moreover, there are only q5 meters of category 5 cable and q6 meters of category 6 cable available in the shop.

Help Alex to solve a hard problem: make a new network construction plan with possible minimal cost. A plan consists of list of links to be made and cable category for each link (each link should be a single piece of cable of either 5 or 6 category). The cost of the plan is the sum of cost of all cables. The total length of cables of each category used in the plan should not exceed the quantity of the cable available in the shop.

Input

The first line of the input file contains two numbers: n — the number of apartments to be connected and m — the number of possible links (1 ≤ n ≤ 1000, 1 ≤ m ≤ 10 000).

Following m lines contain possible link descriptions. Each description consists of three integer numbers: ai and bi — apartments that can be connected by the link and li — link length in meters (0 ≤ li ≤ 100). Apartments are numbered from 1 to n.

The last line of the input file contains four integer numbers: p5q5p6 and q6 — price and quantity of category 5 and 6 cables respectively (1 ≤ piqi ≤ 10 000).

Output

If all apartments can be connected with the available cable, output n lines — an optimal network construction plan. The first line of the plan must contain plan’s cost. Other lines of the plan must consist of two integer numbers each: ai — number of the link to make and ci — the category of the cable to make it of. Links are numbered from 1 to m in the order they are specified in the input file. If there are more than one optimal plans, output any of them.

If there is no plan meeting all requirements, output a single word “Impossible”.

Sample Input

6 7
1 2 7
2 6 5
1 4 8
2 3 5
3 4 5
5 6 6
3 5 3
2 11 3 100

Sample Output

65
1 5
2 6
4 6
5 6
7 5

Source

Northeastern Europe 2007, Northern Subregion
 
  题意:给你一幅图,图上每一条边有长度,给你一定数量的两种电线,告诉你它们的数量以及单价,问你能不能用这些电线花最小的代价令图上每个点互相连通。如果可以就输出最小代价,并输出选了哪些线路,它们分别用了哪种电线,一条线路上只能用一种电线。
  做法是先对这个图求一次MST,如果不存在MST,就输出"Impossbile",否则就有可能存在合法的方案,这里我们可以用背包选电线。我们的目标是让尽量多的电线使用便宜的那一种电线,所以我们对便宜的那种电线进行一次背包,剩下的线路用贵的电线,然后判断一下是否符合输出的电线数量,如果符合就输出所有结果,否者就是非法的。
 
上代码:
 
 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#define MAX 10002
using namespace std; typedef struct edge{
int u,v,l,id; bool operator < (const edge& o)const{
return l<o.l;
}
}edge; edge e[MAX];
int p[MAX],mst[MAX],tot;
int n,m,p5,q5,p6,q6,i5,i6;
int pag[MAX];
bool f[MAX];
set<int> e5,e6; int findset(int u){
return u==p[u] ? p[u] : p[u]=findset(p[u]);
} void MST(){
tot=;
int u,v;
for(int i=;i<m;i++){
u=findset(e[i].u); v=findset(e[i].v);
if(p[u]!=p[v]){
p[v]=u;
mst[tot++]=i;
}
}
} int main()
{
int I5,I6;
//freopen("data.txt","r",stdin);
while(scanf("%d %d",&n,&m)!=EOF){
for(int i=;i<=n;i++) p[i]=i;
for(int i=;i<m;i++){
scanf("%d %d %d",&e[i].u,&e[i].v,&e[i].l);
e[i].id=i+;
}
scanf("%d %d %d %d",&p5,&q5,&p6,&q6);
i5=; i6=;
if(p5>p6){
swap(p5,p6);
swap(q5,q6);
swap(i5,i6);
}
sort(e,e+m);
MST();
if(tot!=n-){
printf("Impossible\n");
continue;
} /*********pag*********/
memset(f,,sizeof(f));
e5.clear(); e6.clear();
//memset(pag,0,sizeof(pag));
f[]=;
for(int i=;i<tot;i++){
int l=e[mst[i]].l;
e6.insert(mst[i]);
for(int j=q5;j>=l;j--){
if(!f[j] && f[j-l]){
f[j]=;
pag[j]=mst[i];
}
}
}
int k=q5;
while(!f[k]) k--;
while(k>){
e5.insert(pag[k]);
e6.erase(pag[k]);
k-=e[pag[k]].l;
}
I5=I6=;
for(set<int>::iterator it = e5.begin();it!=e5.end();it++){
I5+=e[*it].l;
}
for(set<int>::iterator it = e6.begin();it!=e6.end();it++){
I6+=e[*it].l;
}
if(I5<=q5 && I6<=q6){
printf("%d\n",I5*p5+I6*p6);
for(set<int>::iterator it = e5.begin();it!=e5.end();it++){
printf("%d %d\n",e[*it].id,i5);
}
for(set<int>::iterator it = e6.begin();it!=e6.end();it++){
printf("%d %d\n",e[*it].id,i6);
}
}else{
printf("Impossible\n");
}
}
return ;
}

/*3538*/

POJ - 3538 - Domestic Networks的更多相关文章

  1. 100078D Domestic Networks

    传送门 题目大意 有两种染料,给定它们的单价和数量,每染色一米需耗费一个单位的染料,一条边只能用一种燃料,给你一张图,要求你将其中的一些边染色使得在满足图联通的情况下花费最小并输出方案. 分析 首先, ...

  2. POJ 2799 IP Networks

    network address是前(32-n)随意 后n位全零 network mask是前(32-n)全一 后n位全零 本题主要利用位移操作,1ULL表示无符号长整型的常数1,这样写可防止不必要的溢 ...

  3. [poj] 1236 networks of schools

    原题 这是一道强连通分量板子题. 显然subtask1 是要输出入度为0的点的个数 而subtask2,我们考虑一下最优一定是把一个出度为零的点连到入度为零的点上,这样我们要输出的就是max(出度为零 ...

  4. POJ 1236 Networks of School Tarjan 基础

    题目大意: 给一个有向图,一个文件可以从某个点出发传递向他能连的边 现在有两个问题 1.至少需要多少个放文件可以让整个图都有文件 2.可以进行一个操作:给一对点(u,v)连一条u->v的有向边, ...

  5. POJ - 1978 Hanafuda Shuffle

    最初给牌编号时,编号的顺序是从下到上:洗牌时,认牌的顺序是从上到下.注意使用循环是尽量统一“i”的初始化值,都为“0”或者都为“1”,限界条件统一使用“<”或者“<=”. POJ - 19 ...

  6. 迭代加深搜索 POJ 1129 Channel Allocation

    POJ 1129 Channel Allocation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14191   Acc ...

  7. Poj(2784),二进制枚举最小生成树

    题目链接:http://poj.org/problem?id=2784 Buy or Build Time Limit: 2000MS   Memory Limit: 65536K Total Sub ...

  8. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

  9. OpenJudge/Poj 1979 Red and Black / OpenJudge 2816 红与黑

    1.链接地址: http://bailian.openjudge.cn/practice/1979 http://poj.org/problem?id=1979 2.题目: 总时间限制: 1000ms ...

随机推荐

  1. openStack调试

  2. 数据库登陆失败原因: 未与信任 SQL Server 连接相关联

    解决方案:用户 'sa' 登录失败.原因: 未与信任 SQL Server 连接相关联. 问题简述: 用户 'sa' 登录失败.原因: 未与信任 SQL Server 连接相关联. 说明: 执行当前 ...

  3. 马拉车算法(Manacher's Algorithm)

    这是悦乐书的第343次更新,第367篇原创 Manacher's Algorithm,中文名叫马拉车算法,是一位名叫Manacher的人在1975年提出的一种算法,解决的问题是求最长回文子串,神奇之处 ...

  4. Java高质量20问

    问题一:在多线程环境中使用HashMap会有什么问题?在什么情况下使用get()方法会产生无限循环? HashMap本身没有什么问题,有没有问题取决于你是如何使用它的.比如,你在一个线程里初始化了一个 ...

  5. python自动化测试学习笔记-2-列表

    上次我们学习了python的基本概念,了解了python的变量及数据类型,并实战了条件判断,for/while循环,字符串输出,格式化输出的一些基本用法,接下来我们继续学习其他的一些数据类型. pyt ...

  6. Ansible+Jenkins+Gitlab搭建及配置

    Ansible+Jenkins+Gitlab搭建及配置,已经生产环境使用,运行良好. 主机组文件里面好多ip敏感信息就不写了

  7. 命令框中oracle dmp文件的导入和导出(仅做个人备忘)

    1.dmp文件导出 (全部)exp 用户名/密码 rows=y indexes=n compress=n buffer=65536 feedback=100000  file=F:\test.dmp ...

  8. day03_12/13/2016_bean的管理之依赖注入

  9. Linux添加用户组和删除用户组

    1.添加用户组使用groupadd命令添加用户组:groupadd group_name此操作需由系统管理员进行.2.删除用户组使用groupdel命令删除用户组:groupdel group_nam ...

  10. C# 文件操作【转】

    本文也收集了目前最为常用的C#经典操作文件的方法,具体内容如下:C#追加.拷贝.删除.移动文件.创建目录.递归删除文件夹及文件.指定文件夹下面的所有内容copy到目标文件夹下面.指定文件夹下面的所有内 ...