1、首先,须要一个节点对象的类。这些对象包括数据。数据代表存储的内容,并且还有指向节点的两个子节点的引用

class Node {
public int iData;
public double dData;
public Node leftChild;
public Node rightChild;
public void displayNode() {
System.out.print("{");
System.out.print(iData);
System.out.print(",");
System.out.print(dData);
System.out.print("}");
}
}

2、插入一个节点

从根開始查找一个对应的节点,它将是新节点的父节点。

当父节点找到了,新节点就能够连接到它的左子节点或右子节点处。这取决于新节点的值是比父节点的值大还是小。

以下是insert()方法代码:

public void insert(int id, double dd) {
Node newNode = new Node();
newNode.iData = id;
newNode.dData = dd;
if(root == null)
root = newNode;
else {
Node current = root;
Node parent;
while(true) {
parent = current;
if(id < current.iData) {
current = current.leftChild;
if(current == null) {
parent.leftChild = newNode;
return;
}
} else {
current = current.rightChild;
if(current == null) {
parent.rightChild = newNode;
return;
}
}
} // end while
} // end else
}

这里用一个新的变量parent(current的父节点),来存储遇到的最后一个不是null的节点。必须这样做,由于current在查找的过程中会变成null,才干发现它查过的上一个节点没有一个相应的子节点。

假设不存储parent。就会失去插入新节点的位置。

3、查找一个节点

public Node find(int key) {
// 如果树非空
Node current = root;
while(current.iData != key) {
if(key < current.iData)
current = current.leftChild;
else
current = current.rightChild;
if(current == null)
return null;
}
return current;
}

找到节点:假设while循环不满足条件,从循环的末端退出来。current的iData字段和key相等,这就找到了该节点。

找不到节点:假设current等于null。在查找序列中找不到下一个子节点,到达序列的末端而没有找到要找的节点。表明了它不存在。返回nulll来指出这个情况。

4、遍历树(前序遍历。中序遍历,后序遍历)

/**
* 前序遍历
* @param localRoot
*/
public void preOrder(Node localRoot) {
if(localRoot != null) {
System.out.print(localRoot.iData+" ");
preOrder(localRoot.leftChild);
preOrder(localRoot.rightChild);
}
} /**
* 中序遍历
* @param localRoot
*/
public void inOrder(Node localRoot) {
if(localRoot != null) {
preOrder(localRoot.leftChild);
System.out.print(localRoot.iData+" ");
preOrder(localRoot.rightChild);
}
} /**
* 后序遍历
* @param localRoot
*/
public void postOrder(Node localRoot) {
if(localRoot != null) {
preOrder(localRoot.leftChild);
preOrder(localRoot.rightChild);
System.out.print(localRoot.iData+" ");
}
}

遍历树的最简单方法使用递归的方法。

用递归的方法遍历整棵树要用一个节点作为參数。初始化这个节点是根。比如中序遍历仅仅须要做三件事:

1)、调用自身来遍历节点的左子树

2)、訪问这个节点

3)、调用自身来遍历节点的右子树。

5、查找最大值和最小值

/**
* 求树中的最小值
* @return
*/
public Node minimum() {
Node current;
current = root;
Node last = null;
while(current != null) {
last = current;
current = current.leftChild;
}
return last;
} /**
* 求树中的最大值
* @return
*/
public Node maxmum() {
Node current;
current = root;
Node last = null;
while(current != null) {
last = current;
current = current.rightChild;
}
return last;
}

下面是完整測试代码:

package binTree;

class Node {
public int iData;
public double dData;
public Node leftChild;
public Node rightChild;
public void displayNode() {
System.out.print("{");
System.out.print(iData);
System.out.print(",");
System.out.print(dData);
System.out.print("}");
}
} class Tree {
private Node root;
public Tree() {
root = null;
}
/**
* 查找节点
* @param key
* @return
*/
public Node find(int key) {
// 如果树非空
Node current = root;
while(current.iData != key) {
if(key < current.iData)
current = current.leftChild;
else
current = current.rightChild;
if(current == null)
return null;
}
return current;
}
/**
* 插入节点
* @param id
* @param dd
*/
public void insert(int id, double dd) {
Node newNode = new Node();
newNode.iData = id;
newNode.dData = dd;
if(root == null)
root = newNode;
else {
Node current = root;
Node parent;
while(true) {
parent = current;
if(id < current.iData) {
current = current.leftChild;
if(current == null) {
parent.leftChild = newNode;
return;
}
} else {
current = current.rightChild;
if(current == null) {
parent.rightChild = newNode;
return;
}
}
} // end while
} // end else
}
/**
* 前序遍历
* @param localRoot
*/
public void preOrder(Node localRoot) {
if(localRoot != null) {
System.out.print(localRoot.iData+" ");
preOrder(localRoot.leftChild);
preOrder(localRoot.rightChild);
}
} /**
* 中序遍历
* @param localRoot
*/
public void inOrder(Node localRoot) {
if(localRoot != null) {
preOrder(localRoot.leftChild);
System.out.print(localRoot.iData+" ");
preOrder(localRoot.rightChild);
}
} /**
* 后序遍历
* @param localRoot
*/
public void postOrder(Node localRoot) {
if(localRoot != null) {
preOrder(localRoot.leftChild);
preOrder(localRoot.rightChild);
System.out.print(localRoot.iData+" ");
}
} /**
* 求树中的最小值
* @return
*/
public Node minimum() {
Node current;
current = root;
Node last = null;
while(current != null) {
last = current;
current = current.leftChild;
}
return last;
} /**
* 求树中的最大值
* @return
*/
public Node maxmum() {
Node current;
current = root;
Node last = null;
while(current != null) {
last = current;
current = current.rightChild;
}
return last;
}
} public class TreeApp {
public static void main(String[] args) {
Tree theTree = new Tree();
/**
* 50
* / \
* 25 75
* / \ \
* 12 37 87
* / \ \
* 30 43 93
* \ \
* 33 97
*/
theTree.insert(50, 1.5);
theTree.insert(25, 1.2);
theTree.insert(75, 1.7);
theTree.insert(12, 1.5);
theTree.insert(37, 1.2);
theTree.insert(43, 1.7);
theTree.insert(30, 1.5);
theTree.insert(33, 1.2);
theTree.insert(87, 1.7);
theTree.insert(93, 1.5);
theTree.insert(97, 1.5);
System.out.println("插入完成~"); //找到root节点
Node nodeRoot = theTree.find(50);
// 中序遍历
theTree.inOrder(nodeRoot);
System.out.println();
// 求最小值
System.out.println("mini:"+ theTree.minimum().iData);
// 求最大值
System.out.println("max:"+ theTree.maxmum().iData); }
}

Java对二叉搜索树进行插入、查找、遍历、最大值和最小值的操作的更多相关文章

  1. Java实现二叉搜索树的插入、删除

    前置知识 二叉树的结构 public class TreeNode { int val; TreeNode left; TreeNode right; TreeNode() { } TreeNode( ...

  2. Java实现二叉搜索树

    原创:转载需注明原创地址 https://www.cnblogs.com/fanerwei222/p/11406176.html 尝试一下用Java实现二叉搜索树/二叉查找树,记录自己的学习历程. 1 ...

  3. 【Java】 剑指offer(33) 二叉搜索树的后序遍历序列

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如 ...

  4. 剑指Offer:面试题24——二叉搜索树的后序遍历序列(java实现)

    问题描述: 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则返回true,否则返回false.假设输入的数组的任意两个数字都互不相同. 思路: 1.首先后序遍历的结果是[(左子 ...

  5. 剑指Offer-23.二叉搜索树的后序遍历序列(C++/Java)

    题目: 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. 分析: 二叉树的后序遍历也就是先访问左子树,再访问右 ...

  6. 剑指offer23:输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果。输出Yes OR No。

    1 题目描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. 2 思路和方法 二叉搜索树:二叉查找树(Bin ...

  7. P140、面试题24:二叉搜索树的后序遍历序列

    题目:输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则返回true,否则返回false.假设输入的数组的任意两个数字都互不相同. 测试用例: 1)功能测试(输入的后序遍历的序列 ...

  8. [PHP]算法- 判断是否为二叉搜索树的后序遍历序列的PHP实现

    二叉搜索树的后序遍历序列: 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. 思路: 1.后序遍历是 左右中 ...

  9. 二叉搜索树的后序遍历序列(python)

    题目描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. # -*- coding:utf-8 -*- cl ...

随机推荐

  1. [App Store Connect帮助]二、 添加、编辑和删除用户(5)创建一个沙盒测试员帐户

    如果您的 App 使用了 App 内购买项目或 Apple Pay,您可以在 App Store Connect 中创建沙盒测试员帐户,以便您向用户提供该 App 前,可以使用该帐户在测试环境中运行您 ...

  2. oracle学习笔记(二十) 子程序——函数与触发器

    子程序--函数 语法 之前select语句中使用的函数,都是SQL内置函数,我们可以通过自定义函数更满足我们的需要. 自定义函数的语法和存储过程差不多. create [or replace] $fu ...

  3. Java统计一个字符串中各个字符出现的次数

    相信很多人在工作的时候都会遇到这样一个,如何统计一个字符串中各个字符出现的次数呢,这种需求一把用在数据分析方面,比如根据特定的条件去查找某个字符出现的次数.那么如何实现呢,其实也很简单,下面我贴上代码 ...

  4. BZOJ 4668 LCT

    思路: 这不是LCT裸题嘛23333 (好像并查集+按秩合并就可以搞了 我还是too young) 维护边权的话 就新加一个点 代表边 这个点想线段的两个端点连边就好了 //By SiriusRen ...

  5. servlet范围:数据共享

    数据共享: 请求转发:request.getDispatcher("相对路径").forward(request,response) 重定向:response.sendRedire ...

  6. Python--10、生产者消费者模型

    生产者消费者模型(★) 平衡生产线程和消费线程的工作能力来提高程序的整体处理数据的速度.程序中有两类角色:生产数据.消费数据实现方式:生产->队列->消费. 通过一个容器来解决生产者和消费 ...

  7. Glide4.0 centerCrop属性和圆角 冲突

    首先致谢:https://blog.csdn.net/flyinbed_/article/details/75506062 咱们不是代码的生产者,只是代码的搬运工. 最近有个工作中有个需求就是展示的图 ...

  8. Redux 基础概念

    Redux is a predictable state container for JavaScript apps.,亦即 Redux 希望能提供一个可以预测的 state 管理容器,让开发者可以可 ...

  9. Android项目实战_手机安全卫士home界面

    # 安全卫士主页面# ###1.GridView控件 1.与ListView的使用方式差不多,也要使用数据适配器,通过设置android:numColumns控制显示几列 2.通过指定android: ...

  10. 剔除重复jar包,查找重复类

    作为程序员,没有遇到过jar包冲突,不是你幸运,就是你还年轻. jar包冲突有着无穷的魔力,一提到就会有说不完的怨愤,道不清的忧伤,这都是内伤.jar 包冲突就像深藏地底的地雷,看上去平常无奇,一切是 ...