ACM学习历程——UVA11111 Generalized Matrioshkas(栈)
Description
Problem B - Generalized Matrioshkas
| Problem B - Generalized Matrioshkas |
Vladimir worked for years making matrioshkas, those nesting dolls that certainly represent truly Russian craft. A matrioshka is a doll that may be opened in two halves, so that one finds another doll inside. Then this doll may be opened to find another one inside it. This can be repeated several times, till a final doll -that cannot be opened- is reached.
Recently, Vladimir realized that the idea of nesting dolls might be generalized to nesting toys. Indeed, he has designed toys that contain toys but in a more general sense. One of these toys may be opened in two halves and it may have more than one toy inside it. That is the new feature that Vladimir wants to introduce in his new line of toys.
Vladimir has developed a notation to describe how nesting toys should be constructed. A toy is represented with a positive integer, according to its size. More precisely: if when opening the toy represented by m we find the toys represented by n1, n2, ..., nr, it must be true that n1 + n2 + ... + nr < m. And if this is the case, we say that toy mcontains directly the toys n1, n2, ..., nr . It should be clear that toys that may be contained in any of the toys n1, n2, ..., nr are not considered as directly contained in the toy m.
A generalized matrioshka is denoted with a non-empty sequence of non zero integers of the form:
such that toy k is represented in the sequence with two integers - k and k, with the negative one occurring in the sequence first that the positive one.
For example, the sequence
represents a generalized matrioshka conformed by six toys, namely, 1, 2 (twice), 3, 7 and 9. Note that toy 7 contains directly toys 2 and 3. Note that the first copy of toy 2 occurs left from the second one and that the second copy contains directly a toy 1. It would be wrong to understand that the first -2 and the last 2 should be paired.
On the other hand, the following sequences do not describe generalized matrioshkas:
-
-9 -7 -2 2 -3 -1 -2 2 1 3 7 9
because toy 2 is bigger than toy 1 and cannot be allocated inside it.
-
-9 -7 -2 2 -3 -2 -1 1 2 3 7 -2 2 9
because 7 and 2 may not be allocated together inside 9.
-
-9 -7 -2 2 -3 -1 -2 3 2 1 7 9
because there is a nesting problem within toy 3.
Your problem is to write a program to help Vladimir telling good designs from bad ones.
Input
The input file contains several test cases, each one of them in a separate line. Each test case is a sequence of non zero integers, each one with an absolute value less than 107.
Output
Output texts for each input case are presented in the same order that input is read.
For each test case the answer must be a line of the form
:-) Matrioshka!
if the design describes a generalized matrioshka. In other case, the answer should be of the form
:-( Try again.
Sample Input
-9 -7 -2 2 -3 -2 -1 1 2 3 7 9
-9 -7 -2 2 -3 -1 -2 2 1 3 7 9
-9 -7 -2 2 -3 -1 -2 3 2 1 7 9
-100 -50 -6 6 50 100
-100 -50 -6 6 45 100
-10 -5 -2 2 5 -4 -3 3 4 10
-9 -5 -2 2 5 -4 -3 3 4 9
Sample Output
:-) Matrioshka!
:-( Try again.
:-( Try again.
:-) Matrioshka!
:-( Try again.
:-) Matrioshka!
:-( Try again. 按照题目的意思,遵循以下:
1、负数直接入栈。
2、top为0直接入栈。
3、如果为正数:
1·、能与栈顶元素结合,让栈顶元素的ok值为1(ok值起始为0),并由负转正。正数值不入栈。
2·、能与栈顶第二个元素结合,而且可以容下栈顶ok元素(非ok不满足条件),弹出栈顶元素,此时栈顶元素ok值转1,由负转正。
3·、进行完上述过程,对连续的ok值进行结合。val值相加。
4·、对不能结合的正数,根据题目要求必然是坏值,可以入栈或者不入栈,对结果判断不影响。
4、最终只要栈中元素只有一个,并且其ok值为1,说明是好的;其余均是坏的。 代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <string>
#define inf 0x3fffffff
#define eps 1e-10 using namespace std; struct node
{
bool ok;
int val;
}; node Stack[10000];
int top; int Input()
{
int v;
char ch;
top = 0;
for (;;)
{
if (scanf("%d", &v) == EOF)
return -1;
ch = getchar();
if (v < 0)
{
Stack[top].ok = 0;
Stack[top].val = v;
top++;
}
else if (top == 0)
{
Stack[top].ok = 0;
Stack[top].val = v;
}
else if (Stack[top-1].val == -v)
{
Stack[top-1].ok = 1;
Stack[top-1].val = v;
}
else if (top > 1 &&
Stack[top-1].ok == 1 &&
Stack[top-2].val == -v &&
Stack[top-1].val < v)
{
top--;
Stack[top-1].ok = 1;
Stack[top-1].val = v;
}
while (top > 1 &&
Stack[top-1].ok == 1 &&
Stack[top-2].ok == 1)
{
Stack[top-2].val += Stack[top-1].val;
top--;
}
if (ch == '\n')
{
if (top == 1 && Stack[top-1].ok == 1)
return 1;
else
return 0;
}
}
} void qt()
{
int ans;
for (;;)
{
ans = Input();
if (ans == -1)
break;
if (ans == 0)
printf(":-( Try again.\n");
else
printf(":-) Matrioshka!\n");
}
} int main()
{
//freopen ("test.txt", "r", stdin);
qt();
return 0;
}
ACM学习历程——UVA11111 Generalized Matrioshkas(栈)的更多相关文章
- ACM学习历程——UVA11234 Expressions(栈,队列,树的遍历,后序遍历,bfs)
Description Problem E: Expressions2007/2008 ACM International Collegiate Programming Contest Unive ...
- ACM学习历程——UVA 127 "Accordian" Patience(栈;模拟)
Description ``Accordian'' Patience You are to simulate the playing of games of ``Accordian'' patie ...
- ACM学习历程——UVA442 Matrix Chain Multiplication(栈)
Description Matrix Chain Multiplication Matrix Chain Multiplication Suppose you have to evaluate ...
- ACM学习历程——UVA127 "Accordian" Patience(栈, 链表)
Description ``Accordian'' Patience You are to simulate the playing of games of ``Accordian'' patie ...
- ACM学习历程——ZOJ 3829 Known Notation (2014牡丹江区域赛K题)(策略,栈)
Description Do you know reverse Polish notation (RPN)? It is a known notation in the area of mathema ...
- 完成了C++作业,本博客现在开始全面记录acm学习历程,真正的acm之路,现在开始
以下以目前遇到题目开始记录,按发布时间排序 ACM之递推递归 ACM之数学题 拓扑排序 ACM之最短路径做题笔记与记录 STL学习笔记不(定期更新) 八皇后问题解题报告
- ACM学习历程—HDU 5512 Pagodas(数学)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5512 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是给了初始的集合{a, b},然后取集合里 ...
- ACM学习历程—HDU5521 Meeting(图论)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5521 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是一个人从1开始走,一个人从n开始走.让最 ...
- ACM学习历程—HDU2476 String painter(动态规划)
http://acm.hdu.edu.cn/showproblem.php?pid=2476 题目大意是给定一个起始串和一个目标串,然后每次可以将某一段区间染成一种字符,问从起始串到目标串最少需要染多 ...
随机推荐
- 【BLE】CC2541之自己定义按键
本篇博文最后改动时间:2017年01月06日,11:06. 一.简单介绍 本文以SimpleBLEPeripheral为例.介绍怎样将普通IO口(P12)自己定义为按键. 注:本文加入按键方法不与协议 ...
- CentOS6下基于Nginx搭建mp4/flv流媒体服务器
CentOS6下基于Nginx搭建mp4/flv流媒体服务器(可随意拖动)并支持RTMP/HLS协议(含转码工具) 1.先添加几个RPM下载源 1.1)安装RPMforge的CentOS6源 [roo ...
- mongo的时间类型,erlang中对其的处理
需求:要想在一个调度中,从mongo中查出大于一个时间戳的所有的数据总和. 这个需求很简单,一个是scheduler,还有另一个就是查出来大于某个时间戳的总和,比如大于每天0点时间点的和. 需要注意的 ...
- 初识vue-01
一.属性和方法 vue自定义的一些数据和方法需要绑定到实例的不同属性上面去例如数据都要绑定要data属性,方法都要绑定到methods方法实例上的data和methods里面的key值会自动挂载到vu ...
- c# 根据枚举Value 获得名称
// 定义枚举类型enum sotype : int { book=1, pen=2, other=3 } // 输出名称 switch (Enum.GetName(typeof(sotype), 1 ...
- 开发及应用中 Linux与Window 取舍
Linux是开源的,而Windows不是.这个也是Linux与Windows之间最大的差异.一般来说,开源似乎收到了更多系统管理员的亲睐,而开源的软件似乎更受个人电脑用户的欢迎.两种类型之间有很多不同 ...
- 五个知识体系之-Linux常用命令学习
1.ls命令 就是list的缩写,通过ls 命令不仅可以查看linux文件夹包含的文件,而且可以查看文件权限(包括目录.文件夹.文件权限)查看目录信息等等 常用参数搭配: ls -a 列出目录所有文 ...
- substr扩展版:支持中文字符串截取
function d_substr($str, $start=0, $length, $charset="utf-8", $suffix=true) { if(function_e ...
- mysql批量插入测试数据
一.建表语句 use test; create table student( Sno ) NOT NULL COMMENT '学号', Sname ) NOT NULL COMMENT '姓名', S ...
- 【题解】 CF734F 【Anton and School】
题解 CF734F [Anton and School] 传送门 这种将位运算和普通运算结合起来的题目要拆位来考虑,可以得到\(log_{2}(\)值域\()\)的算法,甚至将值域看成常数. 根据 \ ...