uva 11374 最短路+记录路径 dijkstra最短路模板
UVA - 11374
| Time Limit:1000MS | Memory Limit:Unknown | 64bit IO Format:%lld & %llu |
[Submit] [Go Back] [ id=22966" style="color:rgb(106,57,6); text-decoration:none">Status
Description
|
ProblemD: Airport Express |

In a small city called Iokh, a train service, Airport-Express, takes residents to the airport more quickly than other transports. There are two types of trains in Airport-Express, theEconomy-Xpress and theCommercial-Xpress.
They travel at different speeds, take different routes and have different costs.
Jason is going to the airport to meet his friend. He wants to take the Commercial-Xpress which is supposed to be faster, but he doesn't have enough money. Luckily he has a ticket for the Commercial-Xpress which can take him one station forward. If he used
the ticket wisely, he might end up saving a lot of time. However, choosing the best time to use the ticket is not easy for him.
Jason now seeks your help. The routes of the two types of trains are given. Please write a program to find the best route to the destination. The program should also tell when the ticket should be used.
Input
The input consists of several test cases. Consecutive cases are separated by a blank line.
The first line of each case contains 3 integers, namely N,S andE (2 ≤N ≤ 500, 1 ≤S,E ≤N),
which represent the number of stations, the starting point and where the airport is located respectively.
There is an integer M (1 ≤ M ≤ 1000) representing the number of connections between the stations of the Economy-Xpress. The nextM lines give the information of the routes of the
Economy-Xpress. Each consists of three integersX, Y and Z (X,Y ≤N, 1 ≤Z ≤
100). This meansX andY are connected and it takesZ minutes to travel between these two stations.
The next line is another integer K (1 ≤ K ≤ 1000) representing the number of connections between the stations of the Commercial-Xpress. The nextK lines contain the information
of the Commercial-Xpress in the same format as that of the Economy-Xpress.
All connections are bi-directional. You may assume that there is exactly one optimal route to the airport. There might be cases where you MUST use your ticket in order to reach the airport.
Output
For each case, you should first list the number of stations which Jason would visit in order. On the next line, output "TicketNot Used" if you decided NOT to use the ticket; otherwise, state the station where Jason should get on the train
of Commercial-Xpress. Finally, print thetotal time for the journey on the last line. Consecutive sets of output must be separated by a blank line.
Sample Input
4 1 4
4
1 2 2
1 3 3
2 4 4
3 4 5
1
2 4 3
Sample Output
1 2 4
2
5
Problemsetter: Raymond Chun
Originally appeared in CXPC, Feb. 2004
http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=22966
由于仅仅能做一次商业线。我们能够枚举商业线T(a,b),则总时间为f(a)+T(a,b)+g(b);f和g用两次dijkstra来计算,以S为起点的dijkstra和以E为起点的dijkstra;
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int MAXN = 505;
const int INF = 0x3f3f3f3f;
struct Edge {
int from, to, dist;
};
struct HeapNode {
int d, u;
bool operator< (const HeapNode rhs) const {
return d > rhs.d;
}
};
struct Dijkstra {
int n, m; // 点数和边数
vector<Edge> edges; //边列表
vector<int> G[MAXN]; // 每一个点出发的边编号(0開始)
bool done[MAXN]; // 是否已标记
int d[MAXN]; //s 到各个点的距离
int p[MAXN]; //最短路中上一个点,也能够是上一条边
void init(int n) {
this->n = n;
for (int i = 0; i < n; i++)
G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int dist) {
edges.push_back((Edge){from, to, dist});
m = edges.size();
G[from].push_back(m-1);
}
void dijkstra(int s) {
priority_queue<HeapNode> Q;
for (int i = 0; i < n; i++)
d[i] = INF;
d[s] = 0;
memset(done, 0, sizeof(done));
Q.push((HeapNode){0, s});
while (!Q.empty()) {
HeapNode x = Q.top();
Q.pop();
int u = x.u;
if (done[u])
continue;
done[u] = true;
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (d[e.to] > d[u] + e.dist) {
d[e.to] = d[u] + e.dist;
p[e.to] = e.from;
Q.push((HeapNode){d[e.to], e.to});
}
}
}
}
void getPath(vector<int> &path, int s, int e) {
int cur = e;
while (1) {
path.push_back(cur);
if (cur == s)
return ;
cur = p[cur];
}
}
};
int n, m, k, s, e;
int x, y, z;
vector<int> path;
int main() {
int first = 1;
while (scanf("%d%d%d", &n, &s, &e) != EOF) {
if (first)
first = 0;
else printf("\n");
s--, e--;
Dijkstra ans[2];
ans[0].init(n);
ans[1].init(n);
scanf("%d", &m);
while (m--) {
scanf("%d%d%d", &x, &y, &z);
x--, y--;
ans[0].AddEdge(x, y, z);
ans[0].AddEdge(y, x, z);
ans[1].AddEdge(x, y, z);
ans[1].AddEdge(y, x, z);
}
ans[0].dijkstra(s);
ans[1].dijkstra(e);
scanf("%d", &k);
path.clear();
int Min = ans[0].d[e];
int flagx = -1, flagy = -1;
while (k--) {
scanf("%d%d%d", &x, &y, &z);
x--, y--;
if (Min > ans[0].d[x] + z + ans[1].d[y]) {
Min = ans[0].d[x] + z + ans[1].d[y];
flagx = x, flagy = y;
}
if (Min > ans[1].d[x] + z + ans[0].d[y]) {
Min = ans[1].d[x] + z + ans[0].d[y];
flagx = y, flagy = x;
}
}
if (flagx == -1) //推断是否须要坐商业线
{
ans[0].getPath(path, s, e);
reverse(path.begin(), path.end());
for (int i = 0; i < path.size()-1; i++)
printf("%d ", path[i]+1);
printf("%d\n", path[path.size()-1]+1);
printf("Ticket Not Used\n");
printf("%d\n", Min);
}
else {
ans[0].getPath(path, s, flagx);
reverse(path.begin(), path.end());
ans[1].getPath(path, e, flagy);
for (int i = 0; i < path.size()-1; i++)
printf("%d ", path[i]+1);
printf("%d\n", path[path.size()-1]+1);
printf("%d\n", flagx+1);
printf("%d\n", Min);
}
}
return 0;
}
uva 11374 最短路+记录路径 dijkstra最短路模板的更多相关文章
- HDOJ 5294 Tricks Device 最短路(记录路径)+最小割
最短路记录路径,同一时候求出最短的路径上最少要有多少条边, 然后用在最短路上的边又一次构图后求最小割. Tricks Device Time Limit: 2000/1000 MS (Java/Oth ...
- UVA 624(01背包记录路径)
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- E - Coin Change UVA - 674 &&(一些记录路径的方法)
这一道题并不难,我们只需要将dp数组先清空,再给dp[0]=1,之后就按照完全背包的模板写 主要是我们要证明着一种方法不会出现把(1+3+4)(1+4+3)当作两种方法,这一点如果自己写过背包的那个表 ...
- hdu 4871 树的分治+最短路记录路径
/* 题意:给你一些节点和一些边,求最短路径树上是k个节点的最长的路径数. 解:1.求出最短路径树--spfa加记录 2.树上进行操作--树的分治,分别处理子树进行补集等运算 */ #include& ...
- UVA 11374 Halum (差分约束系统,最短路)
题意:给定一个带权有向图,每次你可以选择一个结点v 和整数d ,把所有以v为终点的边权值减少d,把所有以v为起点的边权值增加d,最后要让所有的边权值为正,且尽量大.若无解,输出结果.若可无限大,输出结 ...
- HDU 2544 - 最短路 - [堆优化dijkstra][最短路模板题]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 Time Limit: 5000/1000 MS (Java/Others) Memory Li ...
- PAT甲题题解-1030. Travel Plan (30)-最短路+输出路径
模板题最短路+输出路径如果最短路不唯一,输出cost最小的 #include <iostream> #include <cstdio> #include <algorit ...
- 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)
layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...
- UVA 11374 Airport Express 机场快线(单源最短路,dijkstra,变形)
题意: 给一幅图,要从s点要到e点,图中有两种无向边分别在两个集合中,第一个集合是可以无限次使用的,第二个集合中的边只能挑1条.问如何使距离最短?输出路径,用了第二个集合中的哪条边,最短距离. 思路: ...
随机推荐
- Numpy+Pandas读取数据
1.为什么使用Numpy+Pandas 在使用Numpy读取csv文件时,文件中含有字符串时,会出现ValueError错误 2.Pandas读取csv文件:
- 大咖分享 | 一文解锁首届云创大会干货——上篇(文末附演讲ppt文件免费下载)
日,第一届网易云创大会在杭州国际博览中心举办,本次大会由杭州滨江区政府和网易主办,杭州市两创示范工作领导小组办公室协办,网易云承办,以"商业匠心.技术创新"为主题,致力于打通技术创 ...
- [持续集成学习篇]【1】[jenkins安装与配置]
Guided Tour This guided tour will use the "standalone" Jenkins distribution which requires ...
- [uiautomator篇][8] 增加应用读取内置存储卡的权限
1 要在androidmainfest.xml增加权限(这样之后,在设备上的权限才可以点击,不然是灰色) <uses-permission android:name="android. ...
- 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 F Color it
链接:https://www.nowcoder.com/acm/contest/163/F 来源:牛客网 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 F Color it 时间限制:C ...
- curl post 用json方式
if(!function_exists('tps_curl_post3')){ function tps_curl_post3($url, $postData) { $postData = json_ ...
- Nginx报 No input file specified. 的问题解决之路 转
https://m.aliyun.com/yunqi/articles/34240 今天接手公司的一个项目,照例将项目clone下来,配置本地host,nginx,然后访问. 怎么回事?迅速在php的 ...
- [LOJ#6002]「网络流 24 题」最小路径覆盖
[LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是 ...
- 【CCF】高速公路 tarjan强连通缩点
[题意] 给定一个有向图,问图中互相可达(强连通)的点有多少对 [AC] 强连通缩点,缩点后是一个DAG,所以互相可达的点只在强连通块里. #include<iostream> #incl ...
- 自己关于Django的一些实践
一 render() redirect() HttpResponse() 响应 是个什么东西 def login(request): if request.method=='POST': userna ...