UVA - 11374

Time Limit:1000MS   Memory Limit:Unknown   64bit IO Format:%lld & %llu

[Submit]  [Go Back]  [

id=22966" style="color:rgb(106,57,6); text-decoration:none">Status]

Description

ProblemD: Airport Express

In a small city called Iokh, a train service, Airport-Express, takes residents to the airport more quickly than other transports. There are two types of trains in Airport-Express, theEconomy-Xpress and theCommercial-Xpress.
They travel at different speeds, take different routes and have different costs.

Jason is going to the airport to meet his friend. He wants to take the Commercial-Xpress which is supposed to be faster, but he doesn't have enough money. Luckily he has a ticket for the Commercial-Xpress which can take him one station forward. If he used
the ticket wisely, he might end up saving a lot of time. However, choosing the best time to use the ticket is not easy for him.

Jason now seeks your help. The routes of the two types of trains are given. Please write a program to find the best route to the destination. The program should also tell when the ticket should be used.

Input

The input consists of several test cases. Consecutive cases are separated by a blank line.

The first line of each case contains 3 integers, namely N,S andE (2 ≤N ≤ 500, 1 ≤S,E ≤N),
which represent the number of stations, the starting point and where the airport is located respectively.

There is an integer M (1 ≤ M ≤ 1000) representing the number of connections between the stations of the Economy-Xpress. The nextM lines give the information of the routes of the
Economy-Xpress. Each consists of three integersXY and Z (X,Y ≤N, 1 ≤Z ≤
100). This meansX andY are connected and it takesZ minutes to travel between these two stations.

The next line is another integer K (1 ≤ K ≤ 1000) representing the number of connections between the stations of the Commercial-Xpress. The nextK lines contain the information
of the Commercial-Xpress in the same format as that of the Economy-Xpress.

All connections are bi-directional. You may assume that there is exactly one optimal route to the airport. There might be cases where you MUST use your ticket in order to reach the airport.

Output

For each case, you should first list the number of stations which Jason would visit in order. On the next line, output "TicketNot Used" if you decided NOT to use the ticket; otherwise, state the station where Jason should get on the train
of Commercial-Xpress. Finally, print thetotal time for the journey on the last line. Consecutive sets of output must be separated by a blank line.

Sample Input

4 1 4
4
1 2 2
1 3 3
2 4 4
3 4 5
1
2 4 3

Sample Output

1 2 4
2
5

Problemsetter: Raymond Chun

Originally appeared in CXPC, Feb. 2004



http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=22966

由于仅仅能做一次商业线。我们能够枚举商业线T(a,b),则总时间为f(a)+T(a,b)+g(b);f和g用两次dijkstra来计算,以S为起点的dijkstra和以E为起点的dijkstra;

#include <iostream>

#include <cstdio>

#include <vector>

#include <cstring>

#include <algorithm>

#include <queue>

using namespace std;

const int MAXN = 505;

const int INF = 0x3f3f3f3f;





struct Edge {

int from, to, dist;

};





struct HeapNode {

int d, u;

bool operator< (const HeapNode rhs) const {

return d > rhs.d;

}

};





struct Dijkstra {

int n, m;    // 点数和边数

vector<Edge> edges;   //边列表

vector<int> G[MAXN];  // 每一个点出发的边编号(0開始)

bool done[MAXN];   // 是否已标记

int d[MAXN];      //s 到各个点的距离

int p[MAXN]; //最短路中上一个点,也能够是上一条边





void init(int n) {

this->n = n;

for (int i = 0; i < n; i++)

G[i].clear();

edges.clear();

}





void AddEdge(int from, int to, int dist) {

edges.push_back((Edge){from, to, dist});

m = edges.size();

G[from].push_back(m-1);

}





void dijkstra(int s) {

priority_queue<HeapNode> Q;

for (int i = 0; i < n; i++)

d[i] = INF;

d[s] = 0;

memset(done, 0, sizeof(done));

Q.push((HeapNode){0, s});

while (!Q.empty()) {

HeapNode x = Q.top();

Q.pop();

int u = x.u;

if (done[u])

continue;

done[u] = true;

for (int i = 0; i < G[u].size(); i++) {

Edge &e = edges[G[u][i]];

if (d[e.to] > d[u] + e.dist) {

d[e.to] = d[u] + e.dist;

p[e.to] = e.from;

Q.push((HeapNode){d[e.to], e.to});

}

}

}

}





void getPath(vector<int> &path, int s, int e) {

int cur = e;

while (1) {

path.push_back(cur);

if (cur == s)

return ;

cur = p[cur];

}

}

};

int n, m, k, s, e;

int x, y, z;

vector<int> path;





int main() {

int first = 1;

while (scanf("%d%d%d", &n, &s, &e) != EOF) {

if (first)

first = 0;

else printf("\n");

s--, e--;

Dijkstra ans[2];

ans[0].init(n);

ans[1].init(n);

scanf("%d", &m);

while (m--) {

scanf("%d%d%d", &x, &y, &z);

x--, y--;

ans[0].AddEdge(x, y, z);

ans[0].AddEdge(y, x, z);

ans[1].AddEdge(x, y, z);

ans[1].AddEdge(y, x, z);

}

ans[0].dijkstra(s);

ans[1].dijkstra(e);

scanf("%d", &k);

path.clear();

int Min = ans[0].d[e];

int flagx = -1, flagy = -1;

while (k--) {

scanf("%d%d%d", &x, &y, &z);

x--, y--;

if (Min > ans[0].d[x] + z + ans[1].d[y]) {

Min = ans[0].d[x] + z + ans[1].d[y];

flagx = x, flagy = y;

}

if (Min > ans[1].d[x] + z + ans[0].d[y]) {

Min = ans[1].d[x] + z + ans[0].d[y];

flagx = y, flagy = x;

}

}

if (flagx == -1) //推断是否须要坐商业线

{

ans[0].getPath(path, s, e);

reverse(path.begin(), path.end());

for (int i = 0; i < path.size()-1; i++)

printf("%d ", path[i]+1);

printf("%d\n", path[path.size()-1]+1);

printf("Ticket Not Used\n");

printf("%d\n", Min);

}

else {

ans[0].getPath(path, s, flagx);

reverse(path.begin(), path.end());

ans[1].getPath(path, e, flagy);

for (int i = 0; i < path.size()-1; i++)

printf("%d ", path[i]+1);

printf("%d\n", path[path.size()-1]+1);

printf("%d\n", flagx+1);

printf("%d\n", Min);

}

}

return 0;

}

uva 11374 最短路+记录路径 dijkstra最短路模板的更多相关文章

  1. HDOJ 5294 Tricks Device 最短路(记录路径)+最小割

    最短路记录路径,同一时候求出最短的路径上最少要有多少条边, 然后用在最短路上的边又一次构图后求最小割. Tricks Device Time Limit: 2000/1000 MS (Java/Oth ...

  2. UVA 624(01背包记录路径)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  3. E - Coin Change UVA - 674 &&(一些记录路径的方法)

    这一道题并不难,我们只需要将dp数组先清空,再给dp[0]=1,之后就按照完全背包的模板写 主要是我们要证明着一种方法不会出现把(1+3+4)(1+4+3)当作两种方法,这一点如果自己写过背包的那个表 ...

  4. hdu 4871 树的分治+最短路记录路径

    /* 题意:给你一些节点和一些边,求最短路径树上是k个节点的最长的路径数. 解:1.求出最短路径树--spfa加记录 2.树上进行操作--树的分治,分别处理子树进行补集等运算 */ #include& ...

  5. UVA 11374 Halum (差分约束系统,最短路)

    题意:给定一个带权有向图,每次你可以选择一个结点v 和整数d ,把所有以v为终点的边权值减少d,把所有以v为起点的边权值增加d,最后要让所有的边权值为正,且尽量大.若无解,输出结果.若可无限大,输出结 ...

  6. HDU 2544 - 最短路 - [堆优化dijkstra][最短路模板题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 Time Limit: 5000/1000 MS (Java/Others) Memory Li ...

  7. PAT甲题题解-1030. Travel Plan (30)-最短路+输出路径

    模板题最短路+输出路径如果最短路不唯一,输出cost最小的 #include <iostream> #include <cstdio> #include <algorit ...

  8. 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)

    layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...

  9. UVA 11374 Airport Express 机场快线(单源最短路,dijkstra,变形)

    题意: 给一幅图,要从s点要到e点,图中有两种无向边分别在两个集合中,第一个集合是可以无限次使用的,第二个集合中的边只能挑1条.问如何使距离最短?输出路径,用了第二个集合中的哪条边,最短距离. 思路: ...

随机推荐

  1. HDU 5399 数学 Too Simple

    题意:有m个1~n的映射,而且对于任意的 i 满足 f1(f2(...fm(i))) = i 其中有些映射是知道的,有些是不知道的,问一共有多少种置换的组合. 分析: 首先这些置换一定是1~n的一个置 ...

  2. js---post与get请求的区别

    request获取请求参数 最为常见的客户端传递参数方式有两种: 浏览器地址栏直接输入:一定是GET请求: 超链接:一定是GET请求: 表单:可以是GET,也可以是POST,这取决与<form& ...

  3. python redis中blpop和lpop的区别

    python redis 中blpop返回的是元组对象,因此返回的时候注意 lpop返回的是对象

  4. Octave 里的 fminunc

    ptions = optimset('GradObj', 'on', 'MaxIter', '100'); initialTheta = zeros(2,1); [optTheta, function ...

  5. HDU——1799循环多少次(杨辉三角/动态规划/C(m,n)组合数)

    循环多少次? Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  6. 23we

    package com.test.dao; import java.sql.Connection; import java.sql.PreparedStatement; import java.sql ...

  7. 刷题总结——小c找朋友(bzoj4264 集合hash)

    题目: Description 幼儿园里有N个小C,两个小C之间可能是朋友也可能不是.所有小C之间的朋友关系构成了一个无向图,这个无向图中有M条边. 园长ATM发现对于两个(不同的)小Ci和j,如果其 ...

  8. 《学习笔记》Maven

    Maven优点之一:jar包统一管理+升级容易+项目清爽 试想一下,我们会在工作中同时创建很多项目,每个项目可能都会引用一些公用的jar包(.NET中是dll文件),一种作法是每个项目里,都复制一份这 ...

  9. AIX 常用命令 第一步(uname,lspv)

    如何知道自己在运行单处理器还是多处理器内核? /unix 是指向已启动内核的符号链接.要了解正在运行什么内核模式,可输入 ls -l /unix 并查看 /unix 链接到什么文件.下面是 ls -l ...

  10. 【前端学习笔记】2015-09-01 附二 关于jq选择器的简单运用

    根据id来选择------$("#id") 根据class来选择------$(".classname") 根据tag来选择-------$("tag ...