uva 11374 最短路+记录路径 dijkstra最短路模板
UVA - 11374
| Time Limit:1000MS | Memory Limit:Unknown | 64bit IO Format:%lld & %llu |
[Submit] [Go Back] [ id=22966" style="color:rgb(106,57,6); text-decoration:none">Status
Description
|
ProblemD: Airport Express |

In a small city called Iokh, a train service, Airport-Express, takes residents to the airport more quickly than other transports. There are two types of trains in Airport-Express, theEconomy-Xpress and theCommercial-Xpress.
They travel at different speeds, take different routes and have different costs.
Jason is going to the airport to meet his friend. He wants to take the Commercial-Xpress which is supposed to be faster, but he doesn't have enough money. Luckily he has a ticket for the Commercial-Xpress which can take him one station forward. If he used
the ticket wisely, he might end up saving a lot of time. However, choosing the best time to use the ticket is not easy for him.
Jason now seeks your help. The routes of the two types of trains are given. Please write a program to find the best route to the destination. The program should also tell when the ticket should be used.
Input
The input consists of several test cases. Consecutive cases are separated by a blank line.
The first line of each case contains 3 integers, namely N,S andE (2 ≤N ≤ 500, 1 ≤S,E ≤N),
which represent the number of stations, the starting point and where the airport is located respectively.
There is an integer M (1 ≤ M ≤ 1000) representing the number of connections between the stations of the Economy-Xpress. The nextM lines give the information of the routes of the
Economy-Xpress. Each consists of three integersX, Y and Z (X,Y ≤N, 1 ≤Z ≤
100). This meansX andY are connected and it takesZ minutes to travel between these two stations.
The next line is another integer K (1 ≤ K ≤ 1000) representing the number of connections between the stations of the Commercial-Xpress. The nextK lines contain the information
of the Commercial-Xpress in the same format as that of the Economy-Xpress.
All connections are bi-directional. You may assume that there is exactly one optimal route to the airport. There might be cases where you MUST use your ticket in order to reach the airport.
Output
For each case, you should first list the number of stations which Jason would visit in order. On the next line, output "TicketNot Used" if you decided NOT to use the ticket; otherwise, state the station where Jason should get on the train
of Commercial-Xpress. Finally, print thetotal time for the journey on the last line. Consecutive sets of output must be separated by a blank line.
Sample Input
4 1 4
4
1 2 2
1 3 3
2 4 4
3 4 5
1
2 4 3
Sample Output
1 2 4
2
5
Problemsetter: Raymond Chun
Originally appeared in CXPC, Feb. 2004
http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=22966
由于仅仅能做一次商业线。我们能够枚举商业线T(a,b),则总时间为f(a)+T(a,b)+g(b);f和g用两次dijkstra来计算,以S为起点的dijkstra和以E为起点的dijkstra;
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int MAXN = 505;
const int INF = 0x3f3f3f3f;
struct Edge {
int from, to, dist;
};
struct HeapNode {
int d, u;
bool operator< (const HeapNode rhs) const {
return d > rhs.d;
}
};
struct Dijkstra {
int n, m; // 点数和边数
vector<Edge> edges; //边列表
vector<int> G[MAXN]; // 每一个点出发的边编号(0開始)
bool done[MAXN]; // 是否已标记
int d[MAXN]; //s 到各个点的距离
int p[MAXN]; //最短路中上一个点,也能够是上一条边
void init(int n) {
this->n = n;
for (int i = 0; i < n; i++)
G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int dist) {
edges.push_back((Edge){from, to, dist});
m = edges.size();
G[from].push_back(m-1);
}
void dijkstra(int s) {
priority_queue<HeapNode> Q;
for (int i = 0; i < n; i++)
d[i] = INF;
d[s] = 0;
memset(done, 0, sizeof(done));
Q.push((HeapNode){0, s});
while (!Q.empty()) {
HeapNode x = Q.top();
Q.pop();
int u = x.u;
if (done[u])
continue;
done[u] = true;
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (d[e.to] > d[u] + e.dist) {
d[e.to] = d[u] + e.dist;
p[e.to] = e.from;
Q.push((HeapNode){d[e.to], e.to});
}
}
}
}
void getPath(vector<int> &path, int s, int e) {
int cur = e;
while (1) {
path.push_back(cur);
if (cur == s)
return ;
cur = p[cur];
}
}
};
int n, m, k, s, e;
int x, y, z;
vector<int> path;
int main() {
int first = 1;
while (scanf("%d%d%d", &n, &s, &e) != EOF) {
if (first)
first = 0;
else printf("\n");
s--, e--;
Dijkstra ans[2];
ans[0].init(n);
ans[1].init(n);
scanf("%d", &m);
while (m--) {
scanf("%d%d%d", &x, &y, &z);
x--, y--;
ans[0].AddEdge(x, y, z);
ans[0].AddEdge(y, x, z);
ans[1].AddEdge(x, y, z);
ans[1].AddEdge(y, x, z);
}
ans[0].dijkstra(s);
ans[1].dijkstra(e);
scanf("%d", &k);
path.clear();
int Min = ans[0].d[e];
int flagx = -1, flagy = -1;
while (k--) {
scanf("%d%d%d", &x, &y, &z);
x--, y--;
if (Min > ans[0].d[x] + z + ans[1].d[y]) {
Min = ans[0].d[x] + z + ans[1].d[y];
flagx = x, flagy = y;
}
if (Min > ans[1].d[x] + z + ans[0].d[y]) {
Min = ans[1].d[x] + z + ans[0].d[y];
flagx = y, flagy = x;
}
}
if (flagx == -1) //推断是否须要坐商业线
{
ans[0].getPath(path, s, e);
reverse(path.begin(), path.end());
for (int i = 0; i < path.size()-1; i++)
printf("%d ", path[i]+1);
printf("%d\n", path[path.size()-1]+1);
printf("Ticket Not Used\n");
printf("%d\n", Min);
}
else {
ans[0].getPath(path, s, flagx);
reverse(path.begin(), path.end());
ans[1].getPath(path, e, flagy);
for (int i = 0; i < path.size()-1; i++)
printf("%d ", path[i]+1);
printf("%d\n", path[path.size()-1]+1);
printf("%d\n", flagx+1);
printf("%d\n", Min);
}
}
return 0;
}
uva 11374 最短路+记录路径 dijkstra最短路模板的更多相关文章
- HDOJ 5294 Tricks Device 最短路(记录路径)+最小割
最短路记录路径,同一时候求出最短的路径上最少要有多少条边, 然后用在最短路上的边又一次构图后求最小割. Tricks Device Time Limit: 2000/1000 MS (Java/Oth ...
- UVA 624(01背包记录路径)
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- E - Coin Change UVA - 674 &&(一些记录路径的方法)
这一道题并不难,我们只需要将dp数组先清空,再给dp[0]=1,之后就按照完全背包的模板写 主要是我们要证明着一种方法不会出现把(1+3+4)(1+4+3)当作两种方法,这一点如果自己写过背包的那个表 ...
- hdu 4871 树的分治+最短路记录路径
/* 题意:给你一些节点和一些边,求最短路径树上是k个节点的最长的路径数. 解:1.求出最短路径树--spfa加记录 2.树上进行操作--树的分治,分别处理子树进行补集等运算 */ #include& ...
- UVA 11374 Halum (差分约束系统,最短路)
题意:给定一个带权有向图,每次你可以选择一个结点v 和整数d ,把所有以v为终点的边权值减少d,把所有以v为起点的边权值增加d,最后要让所有的边权值为正,且尽量大.若无解,输出结果.若可无限大,输出结 ...
- HDU 2544 - 最短路 - [堆优化dijkstra][最短路模板题]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 Time Limit: 5000/1000 MS (Java/Others) Memory Li ...
- PAT甲题题解-1030. Travel Plan (30)-最短路+输出路径
模板题最短路+输出路径如果最短路不唯一,输出cost最小的 #include <iostream> #include <cstdio> #include <algorit ...
- 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)
layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...
- UVA 11374 Airport Express 机场快线(单源最短路,dijkstra,变形)
题意: 给一幅图,要从s点要到e点,图中有两种无向边分别在两个集合中,第一个集合是可以无限次使用的,第二个集合中的边只能挑1条.问如何使距离最短?输出路径,用了第二个集合中的哪条边,最短距离. 思路: ...
随机推荐
- HTTP和HTTPS以及两者的区别
HTTP:是互联网上的应用广泛的一种网络协议,是一个客户端和服务器端请求和应答的传输协议,它可以使浏览器更加高效,使网络传输减少. HTTPS:是以安全为目标的HTTP通道,简单讲是HTTP的安全版, ...
- android:exported属性
这个属性用于指示该服务是否能够被其他应用程序组件调用或跟它交互.如果设置为true,则能够被调用或交互,否则不能.设置为false时,只有同一个应用程序的组件或带有相同用户ID的应用程序才能启动或绑定 ...
- EXCEL常用命令
查找和选择:定位条件(定位空值.错误值) 选择性粘贴
- day07 类的进阶,socket编程初识
类的静态方法: 正常: 添加静态方法: 就会变成一个函数,不会自动传self 参数,不会调用类的变量和实例的变量 不在需要self 名义上归类管,但是它就是一个单独的函数,不在需要传入self,想怎 ...
- Django Form two
Django_Form: 1.class TeacherNewForm(Form): username = fields.CharField( required=True, error_message ...
- Mantis安装与配置
什么是Mantis MantisBT is a free popular web-based bugtracking system (feature list). It is written in t ...
- Leetcode27--->Remove Element(移除数组中给定元素)
题目:给定一个数组array和一个值value,移除掉数组中所有与value值相等的元素,返回新的数组的长度:要求:不能分配额外的数组空间,且必须使用原地排序的思想,空间复杂度O(1); 举例: Gi ...
- 解读Loadrunner网页细分图(Web Page Diagnostics)
[转载的地址]https://www.cnblogs.com/littlecat15/p/9456376.html 一.启用网页细分图 首先在Controller场景设计运行之前,需要在菜单栏中设置D ...
- Convolutional Networks for Image Semantic Segmentation
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/52857657 把前段时间自己整理的一个 ...
- List容器——LinkedList及常用API,实现栈和队列
LinkedList及常用API ① LinkedList----链表 ② LinkedList类扩展AbstractSequentialList并实现List接口 ③ LinkedLis ...