Mex(线段树的巧妙应用)
题目要求求某段区间第一个没有出现的数(0,1,2,3.。。。) ,对于所有的区间,我们把这样的数加起来最后得到一个结果。
首先,我们要求出这样的数,然后还得列举出所有的区间,复杂度太大了。
换种思路,我们定住L,是不是一次性能求出所有的R所得出的结果,这就用到线段树的性质了,因为在移动L的过程中,移一步只变化一个数,那么就可以用线段树进行维护。
首先求出[1,R] 以1为左端的所有区间的情况,记录每个点也就是1到那个点的这段区间值sum[i],以这个值建一颗树,那么在L向前移动的时候,每次丢掉一个数a[i-1], 因为少了这一个数,肯定后面有部分区间是变化的,有部分是不变化的,从这点开始向后找第一个与a[i-1]值相等的数的位置p,那么这个位置后面的sum肯定不会变化,因为丢掉的数又补上了。
那么就可以只考虑,从i位置到p这段里面的sum,如果原先的sum本来就比a[i-1]小,那说明a[i-1]的减少不影响它的值,所以不用改变,而所有大于a[i-1]的值将都变为a[i-1],这样更新一下,求和就可以了。
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#define N 200010
#define LL __int64
#define INF 0xfffffff
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
vector<int>po[N];
map<int,int>f;
LL s[N<<];
int tm[N<<];
LL lz[N<<];
int sum[N];
int p[N],a[N];
bool vis[N];
void up(int w)
{
s[w] = s[w<<]+s[w<<|];
tm[w] = max(tm[w<<],tm[w<<|]);
//cout<<tm[w]<<" "<<w<<endl;
}
void down(int w,int m)
{
if(lz[w]!=-)
{
tm[w<<] = tm[w<<|] = lz[w];
lz[w<<] = lz[w<<|] = lz[w];
s[w<<] = lz[w]*(m-m/);
s[w<<|] = lz[w]*(m/);
lz[w] = -;
//cout<<lz[w]<<" <"<<w<<endl;
}
}
void build(int l,int r,int w)
{
if(l==r)
{
s[w] = sum[l];
tm[w] = sum[l];
return ;
}
int m = (l+r)>>;
build(l,m,w<<);
build(m+,r,w<<|);
up(w);
}
void update(int a,int b,int d,int l,int r,int w)
{
if(a<=l&&b>=r)
{
s[w] = (LL)d*(r-l+);
tm[w] = d;
lz[w] = d;
//cout<<l<<", "<<r<<" "<<tm[w]<<" "<<d<<endl;
return ;
}
int m = (l+r)>>;
down(w,r-l+);
if(a<=m) update(a,b,d,l,m,w<<);
if(b>m) update(a,b,d,m+,r,w<<|);
up(w);
}
int find(int k,int l,int r,int w)
{
// cout<<s[w]<<" "<<tm[w]<<" "<<l<<" "<<r<<" "<<w<<endl;
if(l==r)
{
//cout<<l<<" "<<tm[w]<<endl;
return l;
}
int m = (l+r)>>;
down(w,r-l+);
if(tm[w<<]>k)
return find(k,l,m,w<<);
else
return find(k,m+,r,w<<|);
}
LL query(int a,int b,int l,int r,int w)
{
if(a<=l&&b>=r)
{
return s[w];
}
int m = (l+r)>>;
LL res = ;
down(w,r-l+);
if(a<=m)
res+=query(a,b,l,m,w<<);
if(b>m)
res+=query(a,b,m+,r,w<<|);
return res;
}
int main()
{
int n,i;
while(scanf("%d",&n)&&n)
{
f.clear();
memset(p,,sizeof(p));
memset(vis,,sizeof(vis));
memset(lz,-,sizeof(lz));
for(i = ; i <= n ; i++)
po[i].clear();
int g = ;
for(i = ; i <= n; i++)
{
scanf("%d",&a[i]);
if(!f[a[i]]) f[a[i]] = ++g;
po[f[a[i]]].push_back(i);
}
int o = ;
for(i = ; i <= n ; i++)
{
if(a[i]<N)
vis[a[i]] = ;
if(a[i]<sum[i-])
sum[i] = sum[i-];
else
{
while(vis[o])
o++;
sum[i] = o;
}
}
LL ans=;
build(,n,);
ans+=s[];
//cout<<ans<<endl;
p[f[a[]]] = ;
for(i = ; i <= n ; i++)
{
int k;
int mk = f[a[i-]];
if(p[mk]<po[mk].size())
{
k = po[mk][p[mk]]-;
//cout<<k<<endl;
//p[mk]++;
}
else k = n;
update(,i-,,,n,);
int fk;
if(tm[]>a[i-])
{
fk = find(a[i-],,n,);
update(fk,k,a[i-],,n,);
}
ans+=query(i,n,,n,);
// cout<<ans<<endl;
//cout<<ans<<" "<<fk<<" "<<k<<" "<<a[i-1]<<endl;
//cout<<i<<endl;
//if(a[i]!=a[i-1])
p[f[a[i]]]++;
}
cout<<ans<<endl;
}
return ;
}
Mex(线段树的巧妙应用)的更多相关文章
- HDU-4747 Mex 线段树
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4747 题意:求一个数列中,所有mex(L,R)的和. 注意到mex是单调不降的,那么首先预处理出mex ...
- [置顶] hdu4747 Mex 线段树
题意:给你一个序列,让你求出对于所有区间<i, j>的mex和,mex表示该区间没有出现过的最小的整数. 思路:从时限和点数就可以看出是线段树,并且我们可以枚举左端点i, 然后求出所有左端 ...
- 【插队问题-线段树-思维巧妙】【poj2828】Buy Tickets
可耻的看了题解 巧妙的思维 逆序插入,pos 代表的意义为前面要有pos个空格才OK: 证明:仔细思考一下就觉得是正确的,但是要想到这种方式还是要很聪明,空格是前面的几个数字所形成的,所以要特地留出来 ...
- BZOJ.3585.mex(线段树)
题目链接 题意:多次求区间\(mex\). 考虑\([1,i]\)的\(mex[i]\),显然是单调的 而对于\([l,r]\)与\([l+1,r]\),如果\(nxt[a[l]]>r\),那么 ...
- hdu 4747 mex 线段树+思维
http://acm.hdu.edu.cn/showproblem.php?pid=4747 题意: 我们定义mex(l,r)表示一个序列a[l]....a[r]中没有出现过得最小的非负整数, 然后我 ...
- bzoj 3585 mex - 线段树 - 分块 - 莫队算法
Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问 ...
- Codeforces 1083C Max Mex [线段树]
洛谷 Codeforces 思路 很容易发现答案满足单调性,可以二分答案. 接下来询问就转换成判断前缀点集是否能组成一条链. 我最初的想法:找到点集的直径,判断直径是否覆盖了所有点,需要用到树套树,复 ...
- 【bzoj3585】mex 线段树 mex,sg
Description 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问l, ...
- B - Bash and a Tough Math Puzzle CodeForces - 914D (线段树的巧妙应用)
题目大意:当输入2时,将p处的点的值修改为x, 当输入1时,判断区间[L,R]的gcd是否几乎正确,几乎正确的定义是最多修改一个数,使得区间[L,R]的gcd为x. 题解:用线段树维护一个gcd数组, ...
随机推荐
- input处理函数
input处理函数是潜在的影响你app性能的问题,他们可以阻止帧的形成,并且可以造成多余的亦或不必要的layout的工作. 避免长时间运行input handler:它们会阻塞scroll 不要在in ...
- MAC 安装phantomjs
step1:下载压缩包http://phantomjs.org/ step2:解压缩,我是解压缩到/Users/gxy/software step3:写入配置路径,vi ~/.bash_profile ...
- yolo-开源数据集coco kitti voc
1.kitti数据集(参考博客:https://blog.csdn.net/jesse_mx/article/details/65634482 https://blog.csdn.net/baoli ...
- UVA562(01背包均分问题)
Dividing coins Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Descriptio ...
- ARM、DSP、FPGA的技术特点和区别
在嵌入式开发领域,ARM是一款非常受欢迎的微处理器,其市场覆盖率极高,DSP和FPGA则是作为嵌入式开发的协处理器,协助微处理器更好的实现产品功能. 那三者的技术特点以及区别是什么呢?下文就此问题略做 ...
- Windows 下有什么软件能够极大地提高工作效率
Windows 下有什么软件能够极大地提高工作效率?修改 可以推荐一些好的应用或者有趣的程序,能提升工作效率或者能让人眼前一亮的.修改 举报1 条评论 分享 • 邀请回答 按票数排序按时间排序 2 ...
- java:calendar类及一些比较实用的utils(二)
在这里将我在项目中用到的一些关于使用Calendar的utils分享出来,只是一部分,后期遇到好的通用方法会继续添加,以和大家交流学习,如果你还不熟悉这个类的使用,但是急需某个util,可以加群:41 ...
- PICO SCOPE 3000 Series 示波器
- LeetCode: 258 Add Digits(easy)
题目: Given a non-negative integer num, repeatedly add all its digits until the result has only one di ...
- bootstrap的tab中,echarts 图表宽度设为100%之后,会出现图表宽带变为100px的情况。只有第一个正常
1.原因 echarts官方解释是 Tip: 有时候图表会放在多个标签页里,那些初始隐藏的标签在初始化图表的时候因为获取不到容器的实际高宽,可能会绘制失败,因此在切换到该标签页时需要手动调用resiz ...