Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9208    Accepted Submission(s): 3257

Problem Description
Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

 
Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

 
Output
Per testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

 
Sample Input
2
4 0
3 2
1 2
1 3
 
Sample Output
4
2
 
Source
 
 
代码:
 #include<bits/stdc++.h>
using namespace std;
const int N=1e5+;
int head[N],dfn[N],low[N],belong[N],stak[N],instack[N];
int in[N],out[N];
int incnt,outcnt;
int cnt,indexx,top,ans;
struct node{
int u,v,next;
}edge[N*]; void add(int u,int v)
{
edge[cnt].v=v;
edge[cnt].next=head[u];
head[u]=cnt++;
} void Init()
{
memset(head,-,sizeof(head));
memset(dfn,,sizeof(dfn));
memset(instack,,sizeof(instack));
cnt=indexx=top=ans=;
memset(in,,sizeof(in));
memset(out,,sizeof(out));
incnt=outcnt=;
} void tarjan(int u)
{
dfn[u]=low[u]=++indexx;
stak[++top]=u;
instack[u]=;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(!dfn[v]){
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u]){
ans++;
while(){
int v=stak[top--];
instack[v]=;
belong[v]=ans;
if(u==v)
break;
}
}
} int main()
{
int T,n,m;
int u,v;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
Init();
while(m--){
scanf("%d%d",&u,&v);
add(u,v);
}
for(int i=; i<=n; i++){
if(!dfn[i])
tarjan(i);
}
if(ans==){
printf("0\n");
continue;
}
for(int i=; i<=n; i++){
for(int j=head[i]; j!=-; j=edge[j].next){
int v=edge[j].v;
if(belong[v]!=belong[i]){
in[belong[v]]++;
out[belong[i]]++;
}
}
}
for(int i=; i<=ans; i++){
if(!in[i])
incnt++;
if(!out[i])
outcnt++;
}
printf("%d\n",max(incnt,outcnt));
}
return ;
}

HDU 2767.Proving Equivalences-强连通图(有向图)+缩点的更多相关文章

  1. HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)

    Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...

  2. hdu 2767 Proving Equivalences(tarjan缩点)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...

  3. HDU 2767 Proving Equivalences (强联通)

    pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...

  4. HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  5. hdu 2767 Proving Equivalences

    Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...

  6. HDU 2767 Proving Equivalences (Tarjan)

    Proving Equivalences Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other ...

  7. hdu 2767 Proving Equivalences 强连通缩点

    给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...

  8. HDU 2767:Proving Equivalences(强连通)

    题意: 一个有向图,问最少加几条边,能让它强连通 方法: 1:tarjan 缩点 2:采用如下构造法: 缩点后的图找到所有头结点和尾结点,那么,可以这么构造:把所有的尾结点连一条边到头结点,就必然可以 ...

  9. hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

随机推荐

  1. Play on Words HDU - 1116 (并查集 + 欧拉通路)

    Play on Words HDU - 1116 Some of the secret doors contain a very interesting word puzzle. The team o ...

  2. Kali 安装VMtools(最新)

    老方法安装的VMtools不能进行主宿切换,下面是kali最新版安装VMtools的方法 一.换国内源&更新源 参考 Kali 2017更新源 二.安装VMtools apt-get inst ...

  3. HDU 3032 Nim or not Nim?(Multi_SG,打表找规律)

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  4. git上传自己的代码

    感谢这个哥们的博客,不过里面有些错误. http://www.cnblogs.com/ruofengzhishang/p/3842587.html 下面是我自己的实践成功的: 这篇文章写得是windo ...

  5. sc.exe

    sc.exe 编辑 本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧! 服务管理程序:可用sc.exe远程创建 外文名 sc.exe 停止事件服务 sc  stop eventl ...

  6. Python框架之Django学习笔记(十五)

    表单 从Google的简朴的单个搜索框,到常见的Blog评论提交表单,再到复杂的自定义数据输入接口,HTML表单一直是交互性网站的支柱.本次内容将介绍如何用Django对用户通过表单提交的数据进行访问 ...

  7. github readme.md 添加图片

    简要: 将图片放在仓库里面,在文件里链接它,最后 push 到 github 上. github 图片链接格式: (http://github.com/yourname/your-repository ...

  8. python正则表达式应用优化实例

    1.问题出现 需要提取一份xml文件中参数名和参数值,格式如下: <p name="actOlLaPdcch">true</p> 我们需要的字段如上,红色部 ...

  9. Python爬虫作业

    题目如下:   请分析作业页面(https://edu.cnblogs.com/campus/hbu/Python2018Fall/homework/2420),    爬取已提交作业信息,并生成已提 ...

  10. Selenium - WebDriver: Page Objects

    This chapter is a tutorial introduction to page objects design pattern. A page object represents an ...