HDU 2767.Proving Equivalences-强连通图(有向图)+缩点
Proving Equivalences
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9208 Accepted Submission(s): 3257
Let A be an n × n matrix. Prove that the following statements are equivalent:
1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.
The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.
Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!
I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
4 0
3 2
1 2
1 3
2
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+;
int head[N],dfn[N],low[N],belong[N],stak[N],instack[N];
int in[N],out[N];
int incnt,outcnt;
int cnt,indexx,top,ans;
struct node{
int u,v,next;
}edge[N*]; void add(int u,int v)
{
edge[cnt].v=v;
edge[cnt].next=head[u];
head[u]=cnt++;
} void Init()
{
memset(head,-,sizeof(head));
memset(dfn,,sizeof(dfn));
memset(instack,,sizeof(instack));
cnt=indexx=top=ans=;
memset(in,,sizeof(in));
memset(out,,sizeof(out));
incnt=outcnt=;
} void tarjan(int u)
{
dfn[u]=low[u]=++indexx;
stak[++top]=u;
instack[u]=;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(!dfn[v]){
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u]){
ans++;
while(){
int v=stak[top--];
instack[v]=;
belong[v]=ans;
if(u==v)
break;
}
}
} int main()
{
int T,n,m;
int u,v;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
Init();
while(m--){
scanf("%d%d",&u,&v);
add(u,v);
}
for(int i=; i<=n; i++){
if(!dfn[i])
tarjan(i);
}
if(ans==){
printf("0\n");
continue;
}
for(int i=; i<=n; i++){
for(int j=head[i]; j!=-; j=edge[j].next){
int v=edge[j].v;
if(belong[v]!=belong[i]){
in[belong[v]]++;
out[belong[i]]++;
}
}
}
for(int i=; i<=ans; i++){
if(!in[i])
incnt++;
if(!out[i])
outcnt++;
}
printf("%d\n",max(incnt,outcnt));
}
return ;
}
HDU 2767.Proving Equivalences-强连通图(有向图)+缩点的更多相关文章
- HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)
Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...
- hdu 2767 Proving Equivalences(tarjan缩点)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...
- HDU 2767 Proving Equivalences (强联通)
pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...
- HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- hdu 2767 Proving Equivalences
Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...
- HDU 2767 Proving Equivalences (Tarjan)
Proving Equivalences Time Limit : 4000/2000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other ...
- hdu 2767 Proving Equivalences 强连通缩点
给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...
- HDU 2767:Proving Equivalences(强连通)
题意: 一个有向图,问最少加几条边,能让它强连通 方法: 1:tarjan 缩点 2:采用如下构造法: 缩点后的图找到所有头结点和尾结点,那么,可以这么构造:把所有的尾结点连一条边到头结点,就必然可以 ...
- hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
随机推荐
- 访问tomcat出现HTTP Status 500 - java.lang.IllegalStateException: No output folder
问题:tomcat分为安装版和解压缩版,解压缩版如果解压到安装盘,在浏览器中访问http://localhost:8080,可能会出现500错误,错误提示如下: localhost:8080 jav ...
- 命令java 找不到或无法加载主类
这个是由于用了package导致cmd下找不到class文件产生的错误,解决方案: 方法1.删除HelloWord.java源程序中的第一行package demo1:然后在cmd下正常使用javac ...
- 14,UA池和代理池
今日概要 scrapy下载中间件 UA池 代理池 一,下载中间件(Downloader Middlewares) 位于scrapy引擎和下载器之间的一层组件. - 作用: (1)引擎将请求传递给下载器 ...
- 11,scrapy框架持久化存储
今日总结 基于终端指令的持久化存储 基于管道的持久化存储 今日详情 1.基于终端指令的持久化存储 保证爬虫文件的parse方法中有可迭代类型对象(通常为列表or字典)的返回,该返回值可以通过终端指令的 ...
- python上数据存储 .h5格式或者h5py
最近在做城市计算的项目,数据文件是以.h5的格式存储的,总结下其用法和特点 来自百度百科的简介: HDF(Hierarchical Data Format),可以存储不同类型的图像和数码数据的文件格式 ...
- vrpie在Visio Studio 中无法调试的问题
最近这这几天一直在研究vrpie,之前不能调试,一调试就出问题,打开那个生成的htm文件是没问题的,最初的解决方法是不通过调试来打可那个htm页面,但是这样比较麻烦,因为经常需要和服务器交互,就只能用 ...
- luogu3810 【模板】三维偏序(陌上花开)
ref1 ref2 ref3 ref4 #include <algorithm> #include <iostream> #include <cstdio> usi ...
- Python框架之Django学习笔记(十六)
Django框架之表单(续) 今天简直无力吐槽了,去了香山,结果和网上看到的简直是天壤之别啊,说好的香山的枫树呢?说好的香山的红叶呢?说好的漫山遍野一片红呢?本以为在山上,一口气爬上去,沿路基本都是翠 ...
- Python框架之Django学习笔记(十三)
Django站点管理(续1) 上次介绍了Django的站点管理的一些基础知识,这次再来深入了解一下Django的站点管理. Admin是如何工作的: 在幕后,管理工具是如何工作的呢? 其实很简单. 当 ...
- Android坐标getLeft,getRight,getTop,getBottom,getLocationInWindow和getLocationOnScreen
Android中获取坐标点的一些方法解释 一.getLocationInWindow和getLocationOnScreen的区别 // location [0]--->x坐标,location ...