HDU 2767.Proving Equivalences-强连通图(有向图)+缩点
Proving Equivalences
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9208 Accepted Submission(s): 3257
Let A be an n × n matrix. Prove that the following statements are equivalent:
1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.
The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.
Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!
I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
4 0
3 2
1 2
1 3
2
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+;
int head[N],dfn[N],low[N],belong[N],stak[N],instack[N];
int in[N],out[N];
int incnt,outcnt;
int cnt,indexx,top,ans;
struct node{
int u,v,next;
}edge[N*]; void add(int u,int v)
{
edge[cnt].v=v;
edge[cnt].next=head[u];
head[u]=cnt++;
} void Init()
{
memset(head,-,sizeof(head));
memset(dfn,,sizeof(dfn));
memset(instack,,sizeof(instack));
cnt=indexx=top=ans=;
memset(in,,sizeof(in));
memset(out,,sizeof(out));
incnt=outcnt=;
} void tarjan(int u)
{
dfn[u]=low[u]=++indexx;
stak[++top]=u;
instack[u]=;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(!dfn[v]){
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u]){
ans++;
while(){
int v=stak[top--];
instack[v]=;
belong[v]=ans;
if(u==v)
break;
}
}
} int main()
{
int T,n,m;
int u,v;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
Init();
while(m--){
scanf("%d%d",&u,&v);
add(u,v);
}
for(int i=; i<=n; i++){
if(!dfn[i])
tarjan(i);
}
if(ans==){
printf("0\n");
continue;
}
for(int i=; i<=n; i++){
for(int j=head[i]; j!=-; j=edge[j].next){
int v=edge[j].v;
if(belong[v]!=belong[i]){
in[belong[v]]++;
out[belong[i]]++;
}
}
}
for(int i=; i<=ans; i++){
if(!in[i])
incnt++;
if(!out[i])
outcnt++;
}
printf("%d\n",max(incnt,outcnt));
}
return ;
}
HDU 2767.Proving Equivalences-强连通图(有向图)+缩点的更多相关文章
- HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)
Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...
- hdu 2767 Proving Equivalences(tarjan缩点)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...
- HDU 2767 Proving Equivalences (强联通)
pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...
- HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- hdu 2767 Proving Equivalences
Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...
- HDU 2767 Proving Equivalences (Tarjan)
Proving Equivalences Time Limit : 4000/2000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other ...
- hdu 2767 Proving Equivalences 强连通缩点
给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...
- HDU 2767:Proving Equivalences(强连通)
题意: 一个有向图,问最少加几条边,能让它强连通 方法: 1:tarjan 缩点 2:采用如下构造法: 缩点后的图找到所有头结点和尾结点,那么,可以这么构造:把所有的尾结点连一条边到头结点,就必然可以 ...
- hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
随机推荐
- Birthday Paradox
Birthday Paradox Sometimes some mathematical results are hard to believe. One of the common problems ...
- poj1142 Smith Numbers
Poj1142 Smith Numbers Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13854 ...
- UVA 10859 Placing Lamppost 树形DP+二目标最优解的求解方案
题意:给定一个无向,无环,无多重边,要求找出最少的若干点,使得,每条边之中至少有一个点上有街灯.在满足上述条件的时候将还需要满足让两个点被选择的边的数量尽量多. 题解: 对于如何求解最小的节点数目这点 ...
- 【Unique Paths】cpp
题目: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). ...
- uncompyle2反编译python的.py文件
前几天学用github,一不小心把a.py文件给删除了,由于1天没有提交,也无法找回.突然发现同a.py文件生成的编译文件a.pyc还在,逐去搜索一番反编译的方法. 查询得知python比较好的工具u ...
- Python-S9——Day110-Git继续
1 当日内容概要 2 内容回顾 3 Git版本控制之多人协同开发 4 Git版本控制之fork 5 版本控制之其他 6 Redis之字典基本操作 7 Django中操作Redis 8 Django缓存 ...
- Visual C++ 经典的人脸识别算法源代码
说明:VC++ 经典的人脸识别算法实例,提供人脸五官定位具体算法及两种实现流程. 点击下载
- Oracle 查看锁定对象 解锁
一些ORACLE中的进程被杀掉后,状态被置为"killed",但是锁定的资源很长时间不释放,有时实在没办法,只好重启数据库.现在提供一种方法解决这种问题,那就是在ORACLE中杀不 ...
- 单元测试-mock基础
本文较短,只是备份一下mock的几个常用基础例子方便复习 目录 介绍mock的使用例子 maven资源 <dependency> <groupId>org.mockito< ...
- aspx页面直接访问后台方法
在方法上面机上[WebMethod]就可以直接请求该方法了.