Dinic 算法钩沉
最初是从《挑战程序设计竞赛》上了解到 Dinic 算法的。其中对于 Dinic 算法中的关键词——分层图(layered network,也称『层次图』)的引入的解释如下:
因为最短增广路(shortest augmenting path,SAP)的长度在增广过程中始终不会变短,所以无需每次都通过 BFS 来寻找 SAP。我们可以先进行一次 BFS,然后考虑由近距离顶点指向远距离顶点的边所组成的分层图,在上面进行 DFS 寻找 SAP。如果在分层图上找不到新的增广路了,则说明 SAP 的长度确实变长了,或不存在增广路了,于是重新通过 BFS 构造新的分层图。
关于
SAP 的长度在增广过程中始终不会变短
这一性质,《算法导论》上证明了一个比之更强的引理 (Lemma 26.7):
If the Edmonds-Karp algorithm is run on a flow network $G=(V,E)$ with source $s$ and sink $t$, then for all vertices $v \in V-{s,t}$, the shortest-path distance $\delta_f(s,v)$ in the residual network $G_f$ increases monotonically with each flow augmentation.
证明如下:
将增广前后的流分别记做 $f$ 和 $f'$,用 $\delta_{f}(u,v)$ 表示在剩余网络 $G_f$ 上 从 $u$ 到 $v$ 的距离。设 $v$ 是增广后与 $s$ 的距离变短了的所有顶点中距 $s$ 最近(这里『距 $s$ 最近』是指在 $G_{f'}$ 中距 $s$ 最近)的顶点,并设在 $G_{f'}$ 中 $v$ 的一个前驱为 $u$(即 $(u,v)\in E_{f'}$ 且 $\delta_{f'}(s,u) < \delta_{f'}(s,v)$ )。此时可断言 $(u,v)\notin E_f$,即 $(u,v)$ 是 $G_{f'}$ 中新出现的弧。从而增广路经过弧 $(v,u)$ 。(注意,此引理讨论的是 EK 算法。)EK 算法总是沿着 SAP 增广,所以 $\delta_{f}(s,v) < \delta_{f}(s,u)$ 。再结合 $\delta_{f'}(s,u) < delta_{f'}(s,v)$ 和 $\delta_{f'}(s,v) < \delta_{f}(s,v)$,得 $\delta_{f'}(s,u) < \delta_{f}(s,u)$ ,即增广后 $u$ 与 $s$ 的距离也变短了,又 $\delta_{f'}(s,u) < \delta_{f'}(s,v)$ ,从而与『$v$ 是增广后与 $s$ 的距离变短了的所有顶点中距 $s$ 最近的顶点』矛盾。
类似的,可以证明在 Edmonds-Karp 算法(或者说 SAP 算法)中,每次增广后,从任一顶点 $v$ 到汇点 $t$ 的距离也是不减的。
Dinic 算法钩沉的更多相关文章
- ACM/ICPC 之 Dinic算法(POJ2112)
Optimal Milking //二分枚举最大距离的最小值+Floyd找到最短路+Dinic算法 //参考图论算法书,并对BFS构建层次网络算法进行改进 //Time:157Ms Memory:65 ...
- ISAP算法对 Dinic算法的改进
ISAP算法对 Dinic算法的改进: 在刘汝佳图论的开头引言里面,就指出了,算法的本身细节优化,是比较复杂的,这些高质量的图论算法是无数优秀算法设计师的智慧结晶. 如果一时半会理解不清楚,也是正常的 ...
- [知识点]网络流之Dinic算法
// 此博文为迁移而来,写于2015年2月6日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vrg4.html ...
- 学习笔记 --- 最大流Dinic算法
为与机房各位神犇同步,学习下网络流,百度一下发现竟然那么多做法,最后在两种算法中抉择,分别是Dinic和ISAP算法,问过 CA爷后得知其实效率上无异,所以决定跟随Charge的步伐学习Dinic,所 ...
- Power Network(网络流最大流 & dinic算法 + 优化)
Power Network Time Limit: 2000MS Memory Limit: 32768K Total Submissions: 24019 Accepted: 12540 D ...
- HDU 1532 (Dinic算法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1532 题目大意: 就是由于下大雨的时候约翰的农场就会被雨水给淹没,无奈下约翰不得不修建水沟,而且是网络 ...
- poj 1459 Power Network : 最大网络流 dinic算法实现
点击打开链接 Power Network Time Limit: 2000MS Memory Limit: 32768K Total Submissions: 20903 Accepted: ...
- POJ 1273 Drainage Ditches(网络流dinic算法模板)
POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdi ...
- 【BZOJ】1001: [BeiJing2006]狼抓兔子 Dinic算法求解平面图对偶图-最小割
1001: [BeiJing2006]狼抓兔子 Description 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下 三种类型的道路 1:(x,y)<==>( ...
随机推荐
- JAVA小游戏之两个物体碰撞产生的碰撞检测
首先必须了解两个物体,在移动时,会有怎样的效果,比如沪我们小时候耍过的坦克大战.看起来很简单,但是写起代码来,复杂的要多: 下面举个例子: // 构造一个新的 Rectangle,其左上角的坐标为 ( ...
- CF Gym 100637J Superfactorial numeral system (构造)
题意:给一个式子,ak,k>2时,0<=ak<k:ai都是整数,给你p,q让你求一组ak. 题解:构造,每次除掉q取整得到ai,然后减一减 #include<cstdio> ...
- python中os.listdir( )函数读取文件夹
编写pytohn脚本时通常需要批处理. 列出指定目录下的所有文件/文件夹 os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表,但有个很明显的缺点,它的默认顺序不是有序的或 ...
- Sum All Numbers in a Range-freecodecamp算法题目
Sum All Numbers in a Range 要求 给你一个包含两个数字的数组.返回这两个数字和它们之间所有数字的和. 最小的数字并非总在最前面. 思路 定义结果变量num 在for循环中,i ...
- CF-1143D. The Beatles
题意:有间隔为k的n个点在数轴上,下标为 \(1,k+1, 2*k+1,\cdots (n-1)*k+1\) 首尾相接.设起点为s,步长为L,而现在只知道s距离最近的点的距离为a,和(s+L)距离最近 ...
- k8s Pod的自动水平伸缩(HPA)
我们知道,当访问量或资源需求过高时,使用:kubectl scale命令可以实现对pod的快速伸缩功能 但是我们平时工作中我们并不能提前预知访问量有多少,资源需求多少. 这就很麻烦了,总不能为了需求总 ...
- thinkphp5开发restful-api接口学习 教程视频 接口文档
目录 1. 获取验证码 2. 用户注册 3. 用户登录 4. 用户上传头像 5. 用户修改密码 6. 用户找回密码 7. 用户绑定手机号 8. 用户绑定邮箱 9. 用户绑定用户名(手机/邮箱) 10. ...
- 多进程 multiprocessing 多线程Threading 线程池和进程池concurrent.futures
multiprocessing.procsess 定义一个函数 def func():pass 在if __name__=="__main__":中实例化 p = process( ...
- OpenCV中的绘图函数
OpenCV可以用来绘制不同的集合图形,包括直线,矩形,圆,椭圆,多边形以及在图片上添加文字.用到的绘图函数包括 cv2.line(),cv2.circle(),cv2.rectangle() ,cv ...
- python寻找模块的路径顺序
>>> import sys >>> sys.path ['', '/Library/Frameworks/Python.framework/Versions/3. ...