P2590 [ZJOI2008]树的统计(LCT)
P2590 [ZJOI2008]树的统计
题目描述
一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。
我们将以下面的形式来要求你对这棵树完成一些操作:
I. CHANGE u t : 把结点u的权值改为t
II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值
III. QSUM u v: 询问从点u到点v的路径上的节点的权值和
注意:从点u到点v的路径上的节点包括u和v本身
输入输出格式
输入格式:
输入文件的第一行为一个整数n,表示节点的个数。
接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有一条边相连。
接下来一行n个整数,第i个整数wi表示节点i的权值。
接下来1行,为一个整数q,表示操作的总数。
接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。
输出格式:
对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。
输入输出样例
4
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4
4
1
2
2
10
6
5
6
5
16
说明
对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。
code
树链剖分1000ms左右,动态树4000ms多,不过动态树比树链剖分好写一点。
#include<cstdio>
#include<algorithm> using namespace std; const int N = ; int val[N],fa[N],ch[N][],rev[N],sum[N],mx[N],st[N],top;
struct Edge{
int to,nxt;
}e[N<<];
int head[N],tot; inline void add_edge(int u,int v) {
e[++tot].to = v,e[tot].nxt = head[u],head[u] = tot;
}
void pushup(int x) {
sum[x] = sum[ch[x][]] + sum[ch[x][]] + val[x];
mx[x] = max(max(mx[ch[x][]],mx[ch[x][]]),val[x]);
}
void pushdown(int x) {
int l = ch[x][],r = ch[x][];
if (rev[x]) {
rev[l] ^= ;rev[r] ^= ;
swap(ch[x][],ch[x][]);
rev[x] ^= ;
}
}
bool isroot(int x) {
return ch[fa[x]][]!=x&&ch[fa[x]][]!=x;
}
int son(int x) {
return ch[fa[x]][]==x;
}
void rotate(int x) {
int y = fa[x],z = fa[y],b = son(x),c = son(y),a = ch[x][!b];
if (!isroot(y)) ch[z][c] = x;fa[x] = z;
ch[x][!b] = y;fa[y] = x;
ch[y][b] = a;if (a) fa[a] = y;
pushup(y);pushup(x);
}
void splay(int x) {
top = ;st[++top] = x;
for (int i=x; !isroot(i); i=fa[i]) st[++top] = fa[i];
while (top) pushdown(st[top--]);
while (!isroot(x)) {
int y = fa[x];
if (!isroot(y)) {
if (son(x)==son(y)) rotate(y);
else rotate(x);
}
rotate(x);
}
}
void access(int x) {
for (int t=; x; t=x,x=fa[x]) {
splay(x);ch[x][] = t;pushup(x);
}
}
void makeroot(int x) {
access(x);
splay(x);
rev[x] ^= ;
}
void update(int x,int y) {
makeroot(x);val[x] = y;pushup(x);
}
int query_max(int x,int y) {
makeroot(x);access(y);splay(y);
return mx[y]; // -
}
int query_sum(int x,int y) {
makeroot(x);access(y);splay(y);
return sum[y]; // -
}
void dfs(int u) {
for (int i=head[u]; i; i=e[i].nxt) {
int v = e[i].to;
if (v==fa[u]) continue;
fa[v] = u;
dfs(v);
}
}
int main() {
int n,q,x,y;
char opt[];
mx[] = -1e9; // -
scanf("%d",&n);
for (int a,b,i=; i<n; ++i) {
scanf("%d%d",&a,&b);
add_edge(a,b);add_edge(b,a);
}
for (int i=; i<=n; ++i) scanf("%d",&val[i]);
dfs();
scanf("%d",&q);
while (q--) {
scanf("%s%d%d",opt,&x,&y);
if (opt[]=='H') update(x,y);
else if (opt[]=='M') printf("%d\n",query_max(x,y));
else printf("%d\n",query_sum(x,y));
}
return ;
}
P2590 [ZJOI2008]树的统计(LCT)的更多相关文章
- P2590 [ZJOI2008]树的统计(树链剖分)
P2590 [ZJOI2008]树的统计 虽然是入门树剖模板 但是我终于1A了(大哭) 懒得写啥了(逃 #include<iostream> #include<cstdio> ...
- 洛谷——P2590 [ZJOI2008]树的统计(树链剖分模板练手)
P2590 [ZJOI2008]树的统计 I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 III. QSUM u v: 询问 ...
- Luogu P2590 [ZJOI2008]树的统计
最近在学树剖,看到了这题就做了 [ZJOI2008]树的统计 思路 从题面可以知道,这题是树剖题(要求的和模板没什么区别呀喂 就是在普通的树剖上加了一个最大值 所以可以知道就是树剖+特殊的线段树 线段 ...
- 洛谷P2590 [ZJOI2008] 树的统计 [树链剖分]
题目传送门 树的统计 题目描述 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w. 我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t ...
- 【luogu P2590 [ZJOI2008]树的统计】 题解
题目链接:https://www.luogu.org/problemnew/show/P2590 我想学树剖QAQ #include <cstdio> #include <cstri ...
- 洛谷P2590 [ZJOI2008]树的统计 题解 树链剖分+线段树
题目链接:https://www.luogu.org/problem/P2590 树链剖分模板题. 剖分过程要用到如下7个值: fa[u]:u的父节点编号: dep[u]:u的深度: size[u]: ...
- 洛谷 P2590 [ZJOI2008]树的统计(树链剖分)
题目描述一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w. 我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v ...
- 洛谷 P2590 [ZJOI2008]树的统计
大家好,我非常喜欢暴力数据结构,于是我用块状树过了这道题目 题目: 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w. 我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE ...
- P2590 [ZJOI2008]树的统计
题目描述 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w. 我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u ...
随机推荐
- qrcode.js的识别解析二维码图片和生成二维码图片
qrcode只通过前端就能生成二维码和解析二维码图片, 首先要引入文件qrcode.js,下载地址为:http://static.runoob.com/download/qrcodejs-04f46c ...
- 从零开始的全栈工程师——js篇2.16
js操作css样式 div.style.width=“200px” 在div标签内我们添加了一个style属性 并设定了width值 这种写法会给标签带来了大量的style属性 跟实际项目是不符的 我 ...
- Every ending is just a new beginning.
Every ending is just a new beginning.每次结束都是新的开始.
- ubuntu下virtualbox的卸载
本想在ubuntu下virtualbox,可惜出错了,需要卸载后再安装,只能百度拼凑后再安装: 1.首先是执行删除命令:sudo apt-get remove virtualbox*( 这样就不用去查 ...
- CST,CET,UTC,GMT,DST,Unix时间戳几种常见时间概述与关系(转)
转自:http://www.cnblogs.com/frontendBY/p/5215785.html 1.UTC: Universal Time Coordinated 协调世界时,又称世界标准时间 ...
- 数据类型 -- uint32_t 类型
整型的每一种都有无符号(unsigned)和有符号(signed)两种类型(float和double总是带符号的),在默认情况下声明的整型变量都是有符号的类型(char有点特别),如果需声明无符号类型 ...
- Dll注入:X86/X64 远程线程CreateRemoteThread 注入
远线程注入原理是利用Windows 系统中CreateRemoteThread()这个API,其中第4个参数是准备运行的线程,我们可以将LoadLibrary()填入其中,这样就可以执行远程进程中的L ...
- linux 命令——32 gzip(转)
减少文件大小有两个明显的好处,一是可以减少存储空间,二是通过网络传输文件时,可以减少传输的时间.gzip是在Linux系统中经常使用的一个对文件进行压缩和解压缩的命令,既方便又好用.gzip不仅可以用 ...
- POJ-3565 Ants---KM算法+slack优化
题目链接: https://vjudge.net/problem/POJ-3565 题目大意: 在坐标系中有N只蚂蚁,N棵苹果树,给你蚂蚁和苹果树的坐标.让每只蚂蚁去一棵苹果树, 一棵苹果树对应一只蚂 ...
- 【CF799B】T-shirt buying(一道很水的小根堆)
点此看题面 大致题意: 有\(n\)件T恤衫,告诉你每件T恤衫的价格以及它正面和反面的颜色(\(1≤\)颜色的编号\(≤3\)),现在有m个顾客,已知每个人想要的衣服的颜色(一件T恤衫只要有一面的颜色 ...