设dp[i][j]表示选到了第i张牌,牌号在j之前包括j的概率,cnt[i]表示有i张牌,inv[i]表示i在mod下的逆元,那我们可以考虑转移,dp[i][j]=dp[i-1][j-1]*cnt[j]*inv[n-i+1],这个只是表示当前成功转移到i j的状态,如果要考虑胜利的条件,显然是选在选一次j即可赢取胜率,那么对于答案ans只需要加上dp[i-1][j-1]*cnt[j]*inv[n-i+1]*(cnt[j]-1)*inv[n-i]即可,因为我们这个dp[i][j]是记录j之前所有的概率和,需要开一个sum记录之前的和再去更新当前的dp[i][j]即可,记得初始化,所有dp[0][j]都是1,没有选那么概率显然为1,复杂度O(n^2),可以不需要开二维数组。

 //      ——By DD_BOND

 //#include<bits/stdc++.h>
#include<functional>
#include<algorithm>
#include<iostream>
#include<sstream>
#include<iomanip>
#include<climits>
#include<cstring>
#include<cstdlib>
#include<cstddef>
#include<cstdio>
#include<memory>
#include<vector>
#include<cctype>
#include<string>
#include<cmath>
#include<queue>
#include<deque>
#include<ctime>
#include<stack>
#include<map>
#include<set> #define fi first
#define se second
#define MP make_pair
#define pb push_back
#define INF 0x3f3f3f3f
#define pi 3.1415926535898
#define lowbit(a) (a&(-a))
#define lson l,(l+r)/2,rt<<1
#define rson (l+r)/2+1,r,rt<<1|1
#define Min(a,b,c) min(a,min(b,c))
#define Max(a,b,c) max(a,max(b,c))
#define debug(x) cerr<<#x<<"="<<x<<"\n"; using namespace std; typedef long long ll;
typedef pair<int,int> P;
typedef pair<ll,ll> Pll;
typedef unsigned long long ull; const ll LLMAX=2e18;
const int MOD=;
const double eps=1e-;
const int MAXN=1e6+; inline ll sqr(ll x){ return x*x; }
inline int sqr(int x){ return x*x; }
inline double sqr(double x){ return x*x; }
ll __gcd(ll a,ll b){ return b==? a: __gcd(b,a%b); }
ll qpow(ll a,ll n){ll sum=;while(n){if(n&)sum=sum*a%MOD;a=a*a%MOD;n>>=;}return sum;}
inline int dcmp(double x){ if(fabs(x)<eps) return ; return (x>? : -); } ll dp[][],inv[],cnt[]; int main(void)
{
ios::sync_with_stdio(false); cin.tie(); cout.tie();
inv[]=dp[][]=;
for(int i=;i<=;i++) inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
ll n,ans=; cin>>n;
for(int i=;i<=n;i++){
int x; cin>>x;
cnt[x]++;
dp[][i]=;
}
for(int i=;i<=n;i++){
ll sum=;
for(int j=;j<=n;j++){
ll p=dp[i-][j-]*cnt[j]%MOD*inv[n-i+]%MOD;
sum=(sum+p)%MOD;
dp[i][j]=sum;
if(cnt[j]>=) ans=(ans+p*(cnt[j]-)%MOD*inv[n-i]%MOD)%MOD;
}
}
cout<<ans<<endl;
return ;
}

Codeforces 1156F Card Bag(概率DP)的更多相关文章

  1. hdu4336 Card Collector(概率DP,状态压缩)

    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...

  2. hdu4336 Card Collector 概率dp(或容斥原理?)

    题意: 买东西集齐全套卡片赢大奖.每个包装袋里面有一张卡片或者没有. 已知每种卡片出现的概率 p[i],以及所有的卡片种类的数量 n(1<=n<=20). 问集齐卡片需要买东西的数量的期望 ...

  3. HDU-4336 Card Collector 概率DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意:买食品收集n个卡片,每个卡片的概率分别是pi,且Σp[i]<=1,求收集n个卡片需要 ...

  4. HDU4336 Card Collector (概率dp+状压dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意:有n种卡片,一个包里会包含至多一张卡片,第i种卡片在某个包中出现的次数为pi,问将所有种类的卡片集齐 ...

  5. $HDU$ 4336 $Card\ Collector$ 概率$dp$/$Min-Max$容斥

    正解:期望 解题报告: 传送门! 先放下题意,,,已知有总共有$n$张卡片,每次有$p_i$的概率抽到第$i$张卡,求买所有卡的期望次数 $umm$看到期望自然而然想$dp$? 再一看,哇,$n\le ...

  6. BZOJ 3270 博物馆 && CodeForces 113D. Museum 期望概率dp 高斯消元

    大前提,把两个点的组合看成一种状态 x 两种思路 O(n^7) f[x]表示在某一个点的前提下,这个状态经过那个点的概率,用相邻的点转移状态,高斯一波就好了 O(n^6) 想象成臭气弹,这个和那个的区 ...

  7. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  8. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  9. HDU 4336 Card Collector(动态规划-概率DP)

    Card Collector Problem Description In your childhood, do you crazy for collecting the beautiful card ...

随机推荐

  1. Oracle 表锁定

    --锁表查询SQL SELECT object_name, machine, s.sid, s.serial# FROM gv$locked_object l, dba_objects o, gv$s ...

  2. Socket 对象(内建)方法

    函数 描述 服务器端套接字 s.bind() 绑定地址(host,port)到套接字, 在AF_INET下,以元组(host,port)的形式表示地址. s.listen() 开始TCP监听.back ...

  3. HTML+CSS知识总结1

    一.浏览器页面页面由结构层(html)表现层(css)行为层(js)组成 二.DOCTYPE作用是用来告知浏览器以何种模式渲染文档. 三.严格模式是指浏览器按照W3C标准解析代码,混杂模式又称怪异模式 ...

  4. extern、static

    1. 基本解释:extern可以置于变量或者函数前,以标示变量或者函数的定义在别的文件中,提示编译器遇到此变量和函数时在其他模块中寻找其定义.此外extern也可用来进行链接指定. 也就是说exter ...

  5. Selenium 加载Chrome/Firefox浏览器配置文件

    Selenium启动浏览器时,默认是打开一个新用户,不会加载原有的配置以及插件.但有些时候我们可能需要加载默认配置. 一.Chrome浏览器 1.在Chrome浏览器的地址栏输入:chrome://v ...

  6. 利用H5缓存机制实现点击按钮第一次与之后再点击分别跳转不同页面

    昨天碰到这样一个需求,要求点击按钮第一次跳转到a页面,之后再点击它就跳转到b页面.这个问题我首先就想到了利用H5的缓存sessionstorage来实现,SessionStorage用于本地存储一个会 ...

  7. 关于Jdk7与Jdk8对Collections进行分组的区别

    先准备一点数据: public class User {    private Integer id;    private String type;    private String name;  ...

  8. idea 更新后和新的直接安装前,都需要配置 idea64.exe.vmoptions 后再使用

    配置合适的参数提升性能,默认的性能不高

  9. 为EasyUI的dataGrid单元格增加鼠标移入移出事件

    onLoadSuccess: function (data) { $(".datagrid-row").mouseover(function (e) { var text = $( ...

  10. 一次性生产KEY

    keytool -genkey -alias rebuild -keypass rebuild -keyalg RSA -keysize -validity -keystore rebuild.key ...