Codeforces 1156F Card Bag(概率DP)
设dp[i][j]表示选到了第i张牌,牌号在j之前包括j的概率,cnt[i]表示有i张牌,inv[i]表示i在mod下的逆元,那我们可以考虑转移,dp[i][j]=dp[i-1][j-1]*cnt[j]*inv[n-i+1],这个只是表示当前成功转移到i j的状态,如果要考虑胜利的条件,显然是选在选一次j即可赢取胜率,那么对于答案ans只需要加上dp[i-1][j-1]*cnt[j]*inv[n-i+1]*(cnt[j]-1)*inv[n-i]即可,因为我们这个dp[i][j]是记录j之前所有的概率和,需要开一个sum记录之前的和再去更新当前的dp[i][j]即可,记得初始化,所有dp[0][j]都是1,没有选那么概率显然为1,复杂度O(n^2),可以不需要开二维数组。
// ——By DD_BOND //#include<bits/stdc++.h>
#include<functional>
#include<algorithm>
#include<iostream>
#include<sstream>
#include<iomanip>
#include<climits>
#include<cstring>
#include<cstdlib>
#include<cstddef>
#include<cstdio>
#include<memory>
#include<vector>
#include<cctype>
#include<string>
#include<cmath>
#include<queue>
#include<deque>
#include<ctime>
#include<stack>
#include<map>
#include<set> #define fi first
#define se second
#define MP make_pair
#define pb push_back
#define INF 0x3f3f3f3f
#define pi 3.1415926535898
#define lowbit(a) (a&(-a))
#define lson l,(l+r)/2,rt<<1
#define rson (l+r)/2+1,r,rt<<1|1
#define Min(a,b,c) min(a,min(b,c))
#define Max(a,b,c) max(a,max(b,c))
#define debug(x) cerr<<#x<<"="<<x<<"\n"; using namespace std; typedef long long ll;
typedef pair<int,int> P;
typedef pair<ll,ll> Pll;
typedef unsigned long long ull; const ll LLMAX=2e18;
const int MOD=;
const double eps=1e-;
const int MAXN=1e6+; inline ll sqr(ll x){ return x*x; }
inline int sqr(int x){ return x*x; }
inline double sqr(double x){ return x*x; }
ll __gcd(ll a,ll b){ return b==? a: __gcd(b,a%b); }
ll qpow(ll a,ll n){ll sum=;while(n){if(n&)sum=sum*a%MOD;a=a*a%MOD;n>>=;}return sum;}
inline int dcmp(double x){ if(fabs(x)<eps) return ; return (x>? : -); } ll dp[][],inv[],cnt[]; int main(void)
{
ios::sync_with_stdio(false); cin.tie(); cout.tie();
inv[]=dp[][]=;
for(int i=;i<=;i++) inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
ll n,ans=; cin>>n;
for(int i=;i<=n;i++){
int x; cin>>x;
cnt[x]++;
dp[][i]=;
}
for(int i=;i<=n;i++){
ll sum=;
for(int j=;j<=n;j++){
ll p=dp[i-][j-]*cnt[j]%MOD*inv[n-i+]%MOD;
sum=(sum+p)%MOD;
dp[i][j]=sum;
if(cnt[j]>=) ans=(ans+p*(cnt[j]-)%MOD*inv[n-i]%MOD)%MOD;
}
}
cout<<ans<<endl;
return ;
}
Codeforces 1156F Card Bag(概率DP)的更多相关文章
- hdu4336 Card Collector(概率DP,状态压缩)
In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...
- hdu4336 Card Collector 概率dp(或容斥原理?)
题意: 买东西集齐全套卡片赢大奖.每个包装袋里面有一张卡片或者没有. 已知每种卡片出现的概率 p[i],以及所有的卡片种类的数量 n(1<=n<=20). 问集齐卡片需要买东西的数量的期望 ...
- HDU-4336 Card Collector 概率DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意:买食品收集n个卡片,每个卡片的概率分别是pi,且Σp[i]<=1,求收集n个卡片需要 ...
- HDU4336 Card Collector (概率dp+状压dp)
http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意:有n种卡片,一个包里会包含至多一张卡片,第i种卡片在某个包中出现的次数为pi,问将所有种类的卡片集齐 ...
- $HDU$ 4336 $Card\ Collector$ 概率$dp$/$Min-Max$容斥
正解:期望 解题报告: 传送门! 先放下题意,,,已知有总共有$n$张卡片,每次有$p_i$的概率抽到第$i$张卡,求买所有卡的期望次数 $umm$看到期望自然而然想$dp$? 再一看,哇,$n\le ...
- BZOJ 3270 博物馆 && CodeForces 113D. Museum 期望概率dp 高斯消元
大前提,把两个点的组合看成一种状态 x 两种思路 O(n^7) f[x]表示在某一个点的前提下,这个状态经过那个点的概率,用相邻的点转移状态,高斯一波就好了 O(n^6) 想象成臭气弹,这个和那个的区 ...
- Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题
除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...
- codeforces 148D Bag of mice(概率dp)
题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...
- HDU 4336 Card Collector(动态规划-概率DP)
Card Collector Problem Description In your childhood, do you crazy for collecting the beautiful card ...
随机推荐
- C# IIS域名绑定
C#解决IIS域名批量绑定: https://shiyousan.com/post/636022975388168065 C#程序控制IIS 添加站点域名绑定: https://blog.csdn.n ...
- Linux开机启动和登录时各个文件的执行顺序
1.在Linux内核被加载后,第一个运行的程序便是/sbin/init 该文件会读取/etc/inittab文件,并依据此文件来进行初始化工作.其中/etc/inittab文件最主要的作用就是设定Li ...
- unittest详解(六) 断言
我们在执行测试用例时,怎么来判断这条用例是否通过呢?唯一的办法就是拿实际结果和预期结果进行比较,如果一致用例就是通过的,否则用例就是失败的.在python中这种比较的方法就叫做断言,unittest框 ...
- CF1213F Unstable String Sort
题目链接 问题分析 题目实际上是一堆大于等于的约束.观察这\(2n-2\)个约束.第一组可以将要求的排成一个不降的序列,然后第二组就是在第一组的基础上再添加条件. 不妨设第一组生成的不降序列是\(\{ ...
- Luogu P4709 信息传递 (群论、生成函数、多项式指数函数)
题意: 题解: 这道题我思路大方向是正确的,但是生成函数推错导致一直WA,看了标程才改对-- 首先一个长为\(m\)的轮换的\(n\)次幂会分裂成\(\gcd(n,m)\)个长为\(\frac{m}{ ...
- HUD 1166:敌兵布阵(线段树 or 树状数组)
敌兵布阵 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Problem Des ...
- R_Studio(学生成绩)绘制频率分布直方图、分布饼图、折线比较图
对“Gary.csv”中的成绩数据进行分布分析 (1)按0-59,60-69,70-79,80-89,90-100分组绘制高级语言程序设计成绩的频率分布直方图. (2)按0-59,60-69,70-7 ...
- scala实战学习-尾递归函数
求 $$ \Sigma\sideset{^b_a}f(x) $$ object sumfunc{ def sum(f: Int => Int)(a: Int)(b:Int): Int = { @ ...
- php的while函数
PHP while 循环 PHP Switch PHP For 循环 PHP while 循环在指定条件为 true 时执行代码块. PHP 循环 在您编写代码时,经常需要反复运行同一代码块.我们可以 ...
- js判断某个字符串是否包含另一个字符串
1.indexOf():推荐,可返回某个指定的字符串值在字符串中首次出现的位置.如果要检索的字符串值没有出现,则该方法返回 -1. var str = "123" console. ...