3875: [Ahoi2014]骑士游戏

Time Limit: 30 Sec  Memory Limit: 256 MB
Submit: 181  Solved: 91
[Submit][Status][Discuss]

Description

【故事背景】

长期的宅男生活中,JYY又挖掘出了一款RPG游戏。在这个游戏中JYY会

扮演一个英勇的骑士,用他手中的长剑去杀死入侵村庄的怪兽。

【问题描述】

在这个游戏中,JYY一共有两种攻击方式,一种是普通攻击,一种是法术攻

击。两种攻击方式都会消耗JYY一些体力。采用普通攻击进攻怪兽并不能把怪兽彻底杀死,怪兽的尸体可以变出其他一些新的怪兽,注意一个怪兽可能经过若干次普通攻击后变回一个或更多同样的怪兽;而采用法术攻击则可以彻底将一个怪兽杀死。当然了,一般来说,相比普通攻击,法术攻击会消耗更多的体力值(但由于游戏系统bug,并不保证这一点)。

游戏世界中一共有N种不同的怪兽,分别由1到N编号,现在1号怪兽入

侵村庄了,JYY想知道,最少花费多少体力值才能将所有村庄中的怪兽全部杀死呢?

Input

第一行包含一个整数N。

接下来N行,每行描述一个怪兽的信息;

其中第i行包含若干个整数,前三个整数为Si,Ki和Ri,表示对于i号怪兽,

普通攻击需要消耗Si的体力,法术攻击需要消耗Ki的体力,同时i号怪兽死亡后会产生Ri个新的怪兽。表示一个新出现的怪兽编号。同一编号的怪兽可以出现多个。

Output

输出一行一个整数,表示最少需要的体力值。

Sample Input

4
4 27 3 2 3 2
3 5 1 2
1 13 2 4 2
5 6 1 2

Sample Output

26

HINT

【样例说明】

首先用消耗4点体力用普通攻击,然后出现的怪兽编号是2,2和3。花费

10点体力用法术攻击杀死两个编号为2的怪兽。剩下3号怪兽花费1点体力进

行普通攻击。此时村庄里的怪兽编号是2和4。最后花费11点体力用法术攻击

将这两只怪兽彻底杀死。一共花费的体力是4+5+5+1+5+6=26。

【数据范围】

2<=N<=2*10^5,1<=Ri,Sigma(Ri)<=10^6,1<=Ki,Si<=5*10^14

分析:

首先要明白,SPFA用到了动态逼近(动态规划?)的思想,但它的动态是有后效性的,即一个点出队后,其最短路的值并未完全确定,可能后面还会对它进行松弛再次入队

这个题目其实是可以写出状态转移方程的:

令f[i]为杀死i号怪物的最小花销,则

f[i]=min(k[i],s[i]+Σf[j])

其中j为i用普通攻击后可以分裂为的怪物 ,k[i]为使用法术攻击,s[i]为使用普通攻击

要求杀死1号怪物的最小花费,最终结果即为f[1]

但是直接DP有后效性(状态之间相互依赖,并不是单向依赖),因此我们用SPFA来跑这个DP即可

初始时要把所有点入队,因为它们都可能被更新。

下面的代码中建立了两个邻接表,分别记录某个点的父亲与儿子(e[]与E[]),方便spfa

  1 #include <queue>
2 #include <cstdio>
3 #include <cstring>
4 #include <iostream>
5 #include <algorithm>
6 #define N 201000
7 #define M 2010000
8 #define inf 0x3f3f3f3f
9 using namespace std;
10 struct KSD
11 {
12 int v,next;
13 }e[M],E[M];
14 int head[N],HEAD[N],cnt;
15 inline void add(int u,int v)
16 {
17 e[++cnt].v=v;
18 E[cnt].v=u;
19 e[cnt].next=head[u];
20 E[cnt].next=HEAD[v];
21 HEAD[v]=head[u]=cnt;
22
23 }
24 long long A[N],dist[N];
25 bool in[N];
26 int n;
27 queue<int>q;
28 void spfa()
29 {
30 while(!q.empty())q.pop();
31
32 int i,u,v;
33 for(i=1;i<=n;i++)q.push(i),in[i]=1;
34 while(!q.empty())
35 {
36 u=q.front(),q.pop(),in[u]=0;
37 long long temp=A[u];
38 for(i=head[u];i;i=e[i].next)
39 temp+=dist[e[i].v];
40 if(temp>=dist[u])continue;
41 dist[u]=temp;
42 for(i=HEAD[u];i;i=E[i].next)
43 if(!in[v=E[i].v])q.push(v),in[v]=1;
44 }
45 }
46 int main()
47 {
48 int i,j,k;
49 int a,b,c;
50 scanf("%d",&n);
51 for(i=1;i<=n;i++)
52 {
53 cin>>A[i]>>dist[i]>>c;
54 while(c--)
55 {
56 scanf("%d",&a);
57 add(i,a);
58 }
59 }
60 spfa();
61 cout<<dist[1];
62 return 0;
63 }

BZOJ3875--骑士游戏(SPFA处理带后效性的动态规划)的更多相关文章

  1. bzoj3875 【Ahoi2014】骑士游戏 spfa处理后效性动规

    骑士游戏 [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会 扮演一个英勇的骑士,用他手中的长剑去杀死入侵村庄的怪兽. [问题描述] 在这个游戏中,JYY一共有两种攻 ...

  2. 【BZOJ3875】【AHOI2014】骑士游戏 [Spfa][DP]

    骑士游戏 Time Limit: 30 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 在这个游戏中,JYY一共有两种攻击 ...

  3. 【BZOJ3875】[Ahoi2014&Jsoi2014]骑士游戏 SPFA优化DP

    [BZOJ3875][Ahoi2014&Jsoi2014]骑士游戏 Description  [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会扮演一个英勇的 ...

  4. BZOJ 3875: [Ahoi2014]骑士游戏 spfa dp

    3875: [Ahoi2014]骑士游戏 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3875 Description [故事背景] 长 ...

  5. bzoj 3875 骑士游戏 - spfa - 动态规划

    Description  [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会 扮演一个英勇的骑士,用他手中的长剑去杀死入侵村庄的怪兽. [问题描述] 在这个游戏中,J ...

  6. LUOGU P4042 [AHOI2014/JSOI2014]骑士游戏 (spfa+dp)

    传送门 解题思路 首先设\(f[x]\)表示消灭\(x\)的最小花费,那么转移方程就是 \(f[x]=min(f[x],\sum f[son[x]] +s[x])\),如果这个转移是一个有向无环图,那 ...

  7. luogu 4042 有后效性的dp

    存在有后效性的dp,但转移方程 f[i] = min( f[i], s[i] + sigma f[j] ( j 是后效点) ) 每次建当前点和 转移点的边 e1, 某点和其会影响的点 e2 spfa ...

  8. 2019.01.22 bzoj3875: [Ahoi2014&Jsoi2014]骑士游戏(spfa+dp)

    传送门 题意简述:nnn个怪物,对于编号为iii的怪物可以选择用aia_iai​代价将其分裂成另外的bib_ibi​个怪物或者用cic_ici​代价直接消灭它,现在问消灭编号为1的怪物用的最小代价. ...

  9. BZOJ 3875: [Ahoi2014]骑士游戏 dp+spfa

    题目链接: 题目 3875: [Ahoi2014]骑士游戏 Time Limit: 30 Sec Memory Limit: 256 MB 问题描述 [故事背景] 长期的宅男生活中,JYY又挖掘出了一 ...

随机推荐

  1. 【NOIP2017】跳房子

    这题我0分. 比赛时,我一眼出正解,哈哈,太水了! 这题不就是一个二分+DP+单调队列吗? 然而,细节决定成败. 我错了许多细节,就挂了. 我只考了0分... 首先,这题满足一个条件: 保证g变大后, ...

  2. 房地产大佬潘石屹推荐学Python编程,这本从0到1就够了

    潘石屹推荐学Python编程,很多人都不相信,他的微博真真切切. 连房地产都开始学Python了,因为要听懂机器,让机器为我所用. 再不学习Python真的晚了!!!! 如何学? 怎么学? 还是推荐高 ...

  3. Hadoop单机模式/伪分布式模式/完全分布式模式

    一.Hadoop的三种运行模式(启动模式) 一.单机(非分布式)模式 这种模式在一台单机上运行,没有分布式文件系统,而是直接读写本地操作系统的文件系统. 默认情况下,Hadoop即处于该模式,用于开发 ...

  4. 了解MyISAM与InnoDB的索引差异(转)

    出处原文: 1分钟了解MyISAM与InnoDB的索引差异 数据库的索引分为主键索引(Primary Inkex)与普通索引(Secondary Index).InnoDB和MyISAM是怎么利用B+ ...

  5. sed---流文本操作

    一:sed基本命令 sed的使用格式 sed [optiona] 'command' files sed 参数[-nefir] 动作[n1,[n2]] function sed -n:只有经过sed特 ...

  6. 03 Redis发布与订阅

    以qq群的公告,单个发布者,多个收听者为例 发布/订阅 实验 发布订阅的命令 PUBLISH channel msg 将信息 message 发送到指定的频道 channel SUBSCRIBE ch ...

  7. Linux Exploit系列之七 绕过 ASLR -- 第二部分

    原文地址:https://github.com/wizardforcel/sploitfun-linux-x86-exp-tut-zh/blob/master/7.md 这一节是简单暴力的一节,作者讲 ...

  8. Proxy.newInstance与InvocationHandler的使用示例

    先定义一个接口,根据代理模式的原理,被代理类与代理类都要实现它. public interface Person { void eat(); } 再写一个实际执行任务的类(被代理类): public ...

  9. 安装MySQL数据库并开启远程访问

    一.安装MySQL数据库 MySQL安装在系统盘下(C:\Program Files),方便系统备份. 1.双击安装程序,勾选“I accept the license terms”,点击“Next” ...

  10. 逆天!百度AI音箱重磅升级:最大梦想实现

    7月3日-7月4日,“Baidu Create 2019”百度AI开发者大会,在中国北京·国家会议中心举行. 百度创始人.董事长兼首席执行官李彦宏将与百度各业务板块的领军人物一起,为来自全球各地的开发 ...