BZOJ3875--骑士游戏(SPFA处理带后效性的动态规划)
3875: [Ahoi2014]骑士游戏
Time Limit: 30 Sec Memory Limit: 256 MB
Submit: 181 Solved: 91
[Submit][Status][Discuss]
Description
【故事背景】
长期的宅男生活中,JYY又挖掘出了一款RPG游戏。在这个游戏中JYY会
扮演一个英勇的骑士,用他手中的长剑去杀死入侵村庄的怪兽。
【问题描述】
在这个游戏中,JYY一共有两种攻击方式,一种是普通攻击,一种是法术攻
击。两种攻击方式都会消耗JYY一些体力。采用普通攻击进攻怪兽并不能把怪兽彻底杀死,怪兽的尸体可以变出其他一些新的怪兽,注意一个怪兽可能经过若干次普通攻击后变回一个或更多同样的怪兽;而采用法术攻击则可以彻底将一个怪兽杀死。当然了,一般来说,相比普通攻击,法术攻击会消耗更多的体力值(但由于游戏系统bug,并不保证这一点)。
游戏世界中一共有N种不同的怪兽,分别由1到N编号,现在1号怪兽入
侵村庄了,JYY想知道,最少花费多少体力值才能将所有村庄中的怪兽全部杀死呢?
Input
第一行包含一个整数N。
接下来N行,每行描述一个怪兽的信息;
其中第i行包含若干个整数,前三个整数为Si,Ki和Ri,表示对于i号怪兽,
普通攻击需要消耗Si的体力,法术攻击需要消耗Ki的体力,同时i号怪兽死亡后会产生Ri个新的怪兽。表示一个新出现的怪兽编号。同一编号的怪兽可以出现多个。
Output
输出一行一个整数,表示最少需要的体力值。
Sample Input
4
4 27 3 2 3 2
3 5 1 2
1 13 2 4 2
5 6 1 2
Sample Output
26
HINT
【样例说明】
首先用消耗4点体力用普通攻击,然后出现的怪兽编号是2,2和3。花费
10点体力用法术攻击杀死两个编号为2的怪兽。剩下3号怪兽花费1点体力进
行普通攻击。此时村庄里的怪兽编号是2和4。最后花费11点体力用法术攻击
将这两只怪兽彻底杀死。一共花费的体力是4+5+5+1+5+6=26。
【数据范围】
2<=N<=2*10^5,1<=Ri,Sigma(Ri)<=10^6,1<=Ki,Si<=5*10^14
分析:
首先要明白,SPFA用到了动态逼近(动态规划?)的思想,但它的动态是有后效性的,即一个点出队后,其最短路的值并未完全确定,可能后面还会对它进行松弛再次入队
这个题目其实是可以写出状态转移方程的:
令f[i]为杀死i号怪物的最小花销,则
f[i]=min(k[i],s[i]+Σf[j])
其中j为i用普通攻击后可以分裂为的怪物 ,k[i]为使用法术攻击,s[i]为使用普通攻击
要求杀死1号怪物的最小花费,最终结果即为f[1]
但是直接DP有后效性(状态之间相互依赖,并不是单向依赖),因此我们用SPFA来跑这个DP即可
初始时要把所有点入队,因为它们都可能被更新。
下面的代码中建立了两个邻接表,分别记录某个点的父亲与儿子(e[]与E[]),方便spfa
1 #include <queue>
2 #include <cstdio>
3 #include <cstring>
4 #include <iostream>
5 #include <algorithm>
6 #define N 201000
7 #define M 2010000
8 #define inf 0x3f3f3f3f
9 using namespace std;
10 struct KSD
11 {
12 int v,next;
13 }e[M],E[M];
14 int head[N],HEAD[N],cnt;
15 inline void add(int u,int v)
16 {
17 e[++cnt].v=v;
18 E[cnt].v=u;
19 e[cnt].next=head[u];
20 E[cnt].next=HEAD[v];
21 HEAD[v]=head[u]=cnt;
22
23 }
24 long long A[N],dist[N];
25 bool in[N];
26 int n;
27 queue<int>q;
28 void spfa()
29 {
30 while(!q.empty())q.pop();
31
32 int i,u,v;
33 for(i=1;i<=n;i++)q.push(i),in[i]=1;
34 while(!q.empty())
35 {
36 u=q.front(),q.pop(),in[u]=0;
37 long long temp=A[u];
38 for(i=head[u];i;i=e[i].next)
39 temp+=dist[e[i].v];
40 if(temp>=dist[u])continue;
41 dist[u]=temp;
42 for(i=HEAD[u];i;i=E[i].next)
43 if(!in[v=E[i].v])q.push(v),in[v]=1;
44 }
45 }
46 int main()
47 {
48 int i,j,k;
49 int a,b,c;
50 scanf("%d",&n);
51 for(i=1;i<=n;i++)
52 {
53 cin>>A[i]>>dist[i]>>c;
54 while(c--)
55 {
56 scanf("%d",&a);
57 add(i,a);
58 }
59 }
60 spfa();
61 cout<<dist[1];
62 return 0;
63 }
BZOJ3875--骑士游戏(SPFA处理带后效性的动态规划)的更多相关文章
- bzoj3875 【Ahoi2014】骑士游戏 spfa处理后效性动规
骑士游戏 [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会 扮演一个英勇的骑士,用他手中的长剑去杀死入侵村庄的怪兽. [问题描述] 在这个游戏中,JYY一共有两种攻 ...
- 【BZOJ3875】【AHOI2014】骑士游戏 [Spfa][DP]
骑士游戏 Time Limit: 30 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 在这个游戏中,JYY一共有两种攻击 ...
- 【BZOJ3875】[Ahoi2014&Jsoi2014]骑士游戏 SPFA优化DP
[BZOJ3875][Ahoi2014&Jsoi2014]骑士游戏 Description [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会扮演一个英勇的 ...
- BZOJ 3875: [Ahoi2014]骑士游戏 spfa dp
3875: [Ahoi2014]骑士游戏 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3875 Description [故事背景] 长 ...
- bzoj 3875 骑士游戏 - spfa - 动态规划
Description [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会 扮演一个英勇的骑士,用他手中的长剑去杀死入侵村庄的怪兽. [问题描述] 在这个游戏中,J ...
- LUOGU P4042 [AHOI2014/JSOI2014]骑士游戏 (spfa+dp)
传送门 解题思路 首先设\(f[x]\)表示消灭\(x\)的最小花费,那么转移方程就是 \(f[x]=min(f[x],\sum f[son[x]] +s[x])\),如果这个转移是一个有向无环图,那 ...
- luogu 4042 有后效性的dp
存在有后效性的dp,但转移方程 f[i] = min( f[i], s[i] + sigma f[j] ( j 是后效点) ) 每次建当前点和 转移点的边 e1, 某点和其会影响的点 e2 spfa ...
- 2019.01.22 bzoj3875: [Ahoi2014&Jsoi2014]骑士游戏(spfa+dp)
传送门 题意简述:nnn个怪物,对于编号为iii的怪物可以选择用aia_iai代价将其分裂成另外的bib_ibi个怪物或者用cic_ici代价直接消灭它,现在问消灭编号为1的怪物用的最小代价. ...
- BZOJ 3875: [Ahoi2014]骑士游戏 dp+spfa
题目链接: 题目 3875: [Ahoi2014]骑士游戏 Time Limit: 30 Sec Memory Limit: 256 MB 问题描述 [故事背景] 长期的宅男生活中,JYY又挖掘出了一 ...
随机推荐
- python网络爬虫(7)爬取静态数据详解
目的 爬取http://seputu.com/数据并存储csv文件 导入库 lxml用于解析解析网页HTML等源码,提取数据.一些参考:https://www.cnblogs.com/zhangxin ...
- golang substring
在java下习惯了String.subString(start,end) 然后再golang继续敲substring木有了,看了下代码,也是原生支持的 但是百度发现有些人竟然把字符串转成字符数组再根据 ...
- nginx+php设置大文件请求上传(502及504问题处理)
502问题 php-fpm 修改项: request_terminate_timeout 位置: eg: /etc/php5/fpm2/pool.d/www.conf ; The timeout fo ...
- Windows2003服务器IIS启用Gzip压缩的设置
http://jingyan.baidu.com/article/148a192178ec834d71c3b12b.html 步骤 1 2 3 本文介绍的HTTP压缩方式,采用的是Window ...
- 客户端相关知识学习(一)之混合开发,为什么要在App中使用H5页面以及应用场景、注意事项
混合开发 随着移动互联网的高速发展,常规的开发速度已经渐渐不能满足市场需求.原生H5混合开发应运而生,目前,市场上许多主流应用都有用到混合开发,例如支付宝.美团等.下面,结合我本人的开发经验,简单谈一 ...
- Git复习(十二)之命令专场
命令 git init -> 初始化一个git仓库 git clone -> 克隆一个本地库 git pull -> 拉取服务器最新代码 git fetch –p -> 强行拉 ...
- 面向对象-this关键字的概述和应用
/* 我们曾经说过:定义名字要做到见名知意. this:是当前类的对象引用.简单的记,它就代表当前类的一个对象. 注意:谁调用这个方法,在该方法内部的this就代表谁. this的场景: 解决局部变量 ...
- 01 Redis基础
NoSQL 学名(not only sql) 特点: 存储结构与mysql这一种关系型数据库完全不同,nosql存储的是KV形式 nosql有很多产品,都有自己的api和语法,以及业务场景 产品种类: ...
- 13 UA池和代理池
一. 下载中间件 框架图 下载中间件(Downloader Middlewares) 位于scrapy引擎和下载器之间的一层组件. - 作用: (1)引擎将请求传递给下载器过程中, 下载中间件可以对请 ...
- python之requests示例
一) import requests def download(url, num_tries=, user_agent='wswp', proxies=None): ''' 下载指定url并返回网页内 ...