$ BZOJ1233~ $ 干草堆: (题目特殊性质)



$ solution: $

很妙的一道题目,开始看了一眼觉得是个傻逼贪心,从后往前当前层能多短就多短,尽量节省花费。但是这是DP专题,怎么会有一道小贪心混进来?上网一搜,我果然还是太笨了!

6
11 10 7 3 2 6

这组小数据直接把贪心逼上绝路,如果顶层只有6(6-237-1011),只有三层。而如果顶层宽一点(62-37-10-11),就有四层了。什么!我之前好心节省草包,居然办了坏事?

好吧,题目限定了每一个草包都必须用,这样贪心是有后效性的(你节省的草包改变了下一阶段的状态)。于是我们只好DP,可是我们要维护的东西可就多了:(当前是第几个草包)(最下面一层多宽)(整个干草堆的高度)而题目数据范围只允许我们 $ n~logn $ ,这差距还是有点的,所以我们需要研究题目的性质。

性质: 最下面一层最窄的干草堆一定包含高度最高的最优解。

任意取出一个能使层数最高的方案,设有CA层,把其中从下往上每一层最大的块编号记为Ai;任取一个能使底边最短的方案,设有CB层,把其中从下往上每一层最大的块编号记为Bi。显然A1>=B1,ACB<=BCB,这说明至少存在一个k属于(1,CB),满足Ak-1>=Bk-1且Ak<=Bk。也就是说,方案 A 第K 层完全被方案 B 第K 层包含。构造一个新方案,第K 层往上按方案 A,往下按方案 B,两边都不要的块放中间当第K 层。新方案的层数与 A 相同,而底边长度与 B 相同。证毕。  -----引用

然后我们就可发现我们的底层宽度和整个干草堆的高度是相关联的,我们可以在DP最下面一层宽度的同时记录一下高度即可。就像我们的题目变成了求干草堆底层最窄的方案(方案包含高度)。而为了更好的求底层最窄,我们可以从后往前DP,我们设 $ f[i] $ 表示到倒数第i个干草堆底层最窄的宽度。然后转移就变成了:

$ f[i]=min{s[i]-s[j] }\quad j>i,s[i]-s[j]>f[j] $

(设 $ s[i] $ ) 表示从i开始到最后一个草包的宽度之和(就是后缀和)

然后我们发现这个东西 $ s[i]-s[j] ,s[i]-s[j]>f[j] $ 很难维护,显然我们需要 $ j $ 尽量小,但是小的 $ j $ 并不一定满足 $ s[i] - s[j]>f[j] $ 于是我们用单调队列来维护。

单调队列的 $ j $ 应该从大到小排序,且只有第一个是满足 $ s[i]-s[j]>f[j] $ (因为如果后一个也满足,它的j又小,一定更优),在DP过程中当第二个也满足时,第一个显然失去最优效果(于是删除对首)。然后小的 $ j $ 在加入优先队列时,可以根据定义式( $ f[i]=min{s[i]-s[j] } $ )从后往前淘汰掉比它不优的 $ j $ (具体见代码)



$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ll long long
#define db double
#define rg register int using namespace std; int n,tt;
int a[100005];
int s[100005];
int q[100005];
int h[100005];
int f[100005]; inline int qr(){
register char ch; register bool sign=0; rg res=0;
while(!isdigit(ch=getchar()))if(ch=='-')sign=1;
while(isdigit(ch))res=res*10+(ch^48),ch=getchar();
if(sign)return -res; else return res;
} int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n=qr(); q[++tt]=n+1; rg l=1,r=1;
for(rg i=1;i<=n;++i) a[i]=qr();
for(rg i=n;i>=1;--i) s[i]=s[i+1]+a[i];
for(rg i=n;i>=1;--i){ //注意是从后往前枚举!j 一定大于 i !
while(l<r&&s[i]>=f[q[l+1]]+s[q[l+1]])++l; //后面的j比前面小,比当前这个优,只不过可能不满足s[i]-s[j]>f[j]
(设 $ s[i] $ ) 表示从i开始到最后一个草包的宽
f[i]=s[i]-s[q[l]]; h[i]=h[q[l]]+1;
while(l<=r&&f[q[r]]+s[q[r]]>f[i]+s[i])--r;
q[++r]=i;
}printf("%d\n",h[1]);
return 0;
}

BZOJ 1233 干草堆 (单调队列优化DP)的更多相关文章

  1. BZOJ1233 干草堆 - 单调队列优化DP

    问题描述: 若有干个干草, 分别有各自的宽度, 要求将它们按顺序摆放, 并且每层的宽度不大于 它的下面一层 ,  求最多叠几层 题解: zkw神牛证明了: 底边最短, 层数最高         证明: ...

  2. bzoj 2216: Lightning Conductor 单调队列优化dp

    题目大意 已知一个长度为\(n\)的序列\(a_1,a_2,...,a_n\)对于每个\(1\leq i\leq n\),找到最小的非负整数\(p\)满足: 对于任意的\(j\), \(a_j \le ...

  3. BZOJ 1855 股票交易(单调队列优化DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1855 题意:最近lxhgww又迷上了投资股票, 通过一段时间的观察和学习,他总结出了股票 ...

  4. BZOJ 2806: [Ctsc2012]Cheat(单调队列优化dp+后缀自动机)

    传送门 解题思路 肯定先要建出来广义后缀自动机.刚开始以为是个二分+贪心,写了一下结果\(20\)分.说一下正解,首先显然\(L_0\)具有单调性,是可以二分的.考虑二分后怎样判合法,对于分割序列很容 ...

  5. BZOJ 1499 [NOI2005] 瑰丽华尔兹 | 单调队列优化DP

    BZOJ 1499 瑰丽华尔兹 | 单调队列优化DP 题意 有一块\(n \times m\)的矩形地面,上面有一些障碍(用'#'表示),其余的是空地(用'.'表示).每时每刻,地面都会向某个方向倾斜 ...

  6. bzoj 1499 [NOI2005]瑰丽华尔兹——单调队列优化dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1499 简单的单调队列优化dp.(然而当时却WA得不行.今天总算填了坑) 注意滚动数组赋初值应 ...

  7. 单调队列优化DP || [NOI2005]瑰丽华尔兹 || BZOJ 1499 || Luogu P2254

    题外话:题目极好,做题体验极差 题面:[NOI2005]瑰丽华尔兹 题解: F[t][i][j]表示第t时刻钢琴位于(i,j)时的最大路程F[t][i][j]=max(F[t-1][i][j],F[t ...

  8. P4381 [IOI2008]Island(基环树+单调队列优化dp)

    P4381 [IOI2008]Island 题意:求图中所有基环树的直径和 我们对每棵基环树分别计算答案. 首先我们先bfs找环(dfs易爆栈) 蓝后我们处理直径 直径不在环上,就在环上某点的子树上 ...

  9. 【笔记篇】单调队列优化dp学习笔记&&luogu2569_bzoj1855股票交♂易

    DP颂 DP之神 圣洁美丽 算法光芒照大地 我们怀着 崇高敬意 跪倒在DP神殿里 你的复杂 能让蒟蒻 试图入门却放弃 在你光辉 照耀下面 AC真心不容易 dp大概是最经久不衰 亘古不化的算法了吧. 而 ...

随机推荐

  1. .Net Core入门与.Net需要注意的地方

    1.编码注册 Encoding.RegisterProvider(CodePagesEncodingProvider.Instance); 否则抛出异常 'GB2312' is not a suppo ...

  2. Oracle10g 64位 在Windows 2008 Server R2 中的安装 DBconsole无法启动

    致谢!本文参考http://www.cnblogs.com/leiOOlei/archive/2013/08/19/3268239.html 背景: 操作系统Windows 2008 Server R ...

  3. ORACLE表空间offline谈起,表空间备份恢复

    从ORACLE表空间offline谈起,表空间备份恢复将表空间置为offline,可能的原因包括维护.备份恢复等目的:表空间处于offline状态,那么Oracle不会允许任何对该表空间中对象的SQL ...

  4. scrapy 配置文件指定如何导出数据

    1.导出文件路径 FEED_URI = 'export_data/%(name)s.data' 2.导出数据格式 FEED_FORMAT = 'csv' 3.导出文件编码 FEED_EXPORT_EN ...

  5. Numpy 基础函数

    日后用的着的时候再说,存下来.方便日后查看 NumPy数组使你可以将许多种数据处理任务表述为简洁的数组表达式(否则需要编写循环).用数组表达式代替循环的做法,通常被称为矢量化. 原来一直不明白什么叫矢 ...

  6. PCB布线设计-模拟和数字布线的异同(转)

    工程领域中的数字设计人员和数字电路板设计专家在不断增加,这反映了行业的发展趋势.尽管对数字设计的重视带来了电子产品的重大发展,但仍然存在,而且还会一直存在一部分与模拟或现实环境接口的电路设计.模拟和数 ...

  7. vue中的provide/inject讲解

    最近在看element-ui的源码,发现了一个这样的属性:inject.遂查看官网provider/inject provider/inject:简单的来说就是在父组件中通过provider来提供变量 ...

  8. Mac--PHP已经开启gd扩展验证码不显示

    错误显示:Call to undefined function imagettftext() 原因: mac系统中自带的php的gd库中,缺少对freetype的支持,导致图片无法显示. 解决: 1 ...

  9. 今天起,重新开头学习Java - 一、安装环境

    先拜领路人 https://blog.csdn.net/u011541946/article/category/6951961/3? 一.安装JDK 1. 下载 www.java.com JDK是Ja ...

  10. Struts2的核心配置文件

    Struts2的详细配置: 配置的是struts2的核心配置文件:,在struts2的核心配置文件中主要有三个标签需要进行配置:package,action,result. 1. 配置package标 ...