GANs from Scratch 1: A deep introduction. With code in PyTorch and TensorFlow

修改文章代码中的错误后的代码如下:

import torch
from torch import nn, optim
from torch.autograd.variable import Variable
from torchvision import transforms, datasets
import matplotlib.pyplot as plt DATA_FOLDER = 'D:/WorkSpace/Data/torchvision_data' def mnist_data():
compose = transforms.Compose(
[transforms.ToTensor(),
# transforms.Normalize((.5, .5, .5), (.5, .5, .5))
transforms.Normalize([0.5], [0.5]) # MNIST只有一个通道
])
return datasets.MNIST(root=DATA_FOLDER, train=True, transform=compose) # Load data
data = mnist_data()
# Create loader with data, so that we can iterate over it
data_loader = torch.utils.data.DataLoader(data, batch_size=64, shuffle=True)
# Num batches
num_batches = len(data_loader) class DiscriminatorNet(torch.nn.Module):
"""
A three hidden-layer discriminative neural network
""" def __init__(self):
super(DiscriminatorNet, self).__init__()
n_features = 784
n_out = 1 self.hidden0 = nn.Sequential(
nn.Linear(n_features, 1024),
nn.LeakyReLU(0.2),
nn.Dropout(0.3)
)
self.hidden1 = nn.Sequential(
nn.Linear(1024, 512),
nn.LeakyReLU(0.2),
nn.Dropout(0.3)
)
self.hidden2 = nn.Sequential(
nn.Linear(512, 256),
nn.LeakyReLU(0.2),
nn.Dropout(0.3)
)
self.out = nn.Sequential(
torch.nn.Linear(256, n_out),
torch.nn.Sigmoid()
) def forward(self, x):
x = self.hidden0(x)
x = self.hidden1(x)
x = self.hidden2(x)
x = self.out(x)
return x def images_to_vectors(images):
return images.view(images.size(0), 784) def vectors_to_images(vectors):
return vectors.view(vectors.size(0), 1, 28, 28) class GeneratorNet(torch.nn.Module):
"""
A three hidden-layer generative neural network
""" def __init__(self):
super(GeneratorNet, self).__init__()
n_features = 100
n_out = 784 self.hidden0 = nn.Sequential(
nn.Linear(n_features, 256),
nn.LeakyReLU(0.2)
)
self.hidden1 = nn.Sequential(
nn.Linear(256, 512),
nn.LeakyReLU(0.2)
)
self.hidden2 = nn.Sequential(
nn.Linear(512, 1024),
nn.LeakyReLU(0.2)
) self.out = nn.Sequential(
nn.Linear(1024, n_out),
nn.Tanh()
) def forward(self, x):
x = self.hidden0(x)
x = self.hidden1(x)
x = self.hidden2(x)
x = self.out(x)
return x # Noise
def noise(size):
n = Variable(torch.randn(size, 100))
if torch.cuda.is_available(): return n.cuda()
return n discriminator = DiscriminatorNet()
generator = GeneratorNet()
if torch.cuda.is_available():
discriminator.cuda()
generator.cuda() # Optimizers
d_optimizer = optim.Adam(discriminator.parameters(), lr=0.0002)
g_optimizer = optim.Adam(generator.parameters(), lr=0.0002) # Loss function
loss = nn.BCELoss() # Number of steps to apply to the discriminator
d_steps = 1 # In Goodfellow et. al 2014 this variable is assigned to 1
# Number of epochs
num_epochs = 200 def real_data_target(size):
'''
Tensor containing ones, with shape = size
'''
data = Variable(torch.ones(size, 1))
if torch.cuda.is_available(): return data.cuda()
return data def fake_data_target(size):
'''
Tensor containing zeros, with shape = size
'''
data = Variable(torch.zeros(size, 1))
if torch.cuda.is_available(): return data.cuda()
return data def train_discriminator(optimizer, real_data, fake_data):
# Reset gradients
optimizer.zero_grad() # 1.1 Train on Real Data
prediction_real = discriminator(real_data)
# Calculate error and backpropagate
error_real = loss(prediction_real, real_data_target(real_data.size(0)))
error_real.backward() # 1.2 Train on Fake Data
prediction_fake = discriminator(fake_data)
# Calculate error and backpropagate
error_fake = loss(prediction_fake, fake_data_target(real_data.size(0)))
error_fake.backward() # 1.3 Update weights with gradients
optimizer.step() # Return error
return error_real + error_fake, prediction_real, prediction_fake def train_generator(optimizer, fake_data):
# 2. Train Generator
# Reset gradients
optimizer.zero_grad()
# Sample noise and generate fake data
prediction = discriminator(fake_data)
# Calculate error and backpropagate
error = loss(prediction, real_data_target(prediction.size(0)))
error.backward()
# Update weights with gradients
optimizer.step()
# Return error
return error num_test_samples = 16
test_noise = noise(num_test_samples) for epoch in range(num_epochs):
for n_batch, (real_batch,_) in enumerate(data_loader): # 1. Train Discriminator
real_data = Variable(images_to_vectors(real_batch))
if torch.cuda.is_available(): real_data = real_data.cuda()
# Generate fake data
fake_data = generator(noise(real_data.size(0))).detach()
# Train D
d_error, d_pred_real, d_pred_fake = train_discriminator(d_optimizer,
real_data, fake_data) # 2. Train Generator
# Generate fake data
fake_data = generator(noise(real_batch.size(0)))
# Train G
g_error = train_generator(g_optimizer, fake_data) # Display Progress
print('epoch ', epoch, ': ','d_error is ', d_error, 'g_error is ', g_error)
if (epoch) % 20 == 0:
test_images = vectors_to_images(generator(test_noise)).data.cpu()
fig = plt.figure()
for i in range(len(test_images)):
ax = fig.add_subplot(4, 4, i+1)
ax.imshow(test_images[i][0], cmap=plt.cm.gray)
plt.show()

Implement GAN from scratch的更多相关文章

  1. 机器学习算法之旅A Tour of Machine Learning Algorithms

    In this post we take a tour of the most popular machine learning algorithms. It is useful to tour th ...

  2. ML-学习提纲2

    https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/ http://blog.csdn.net/u0110 ...

  3. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

  4. [RxJS] Implement the `map` Operator from Scratch in RxJS

    While it's great to use the RxJS built-in operators, it's also important to realize you now have the ...

  5. How to implement an algorithm from a scientific paper

    Author: Emmanuel Goossaert 翻译 This article is a short guide to implementing an algorithm from a scie ...

  6. A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)

    A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON  ...

  7. Learning WCF Chapter1 Creating a New Service from Scratch

    You’re about to be introduced to the WCF service. This lab isn’t your typical “Hello World”—it’s “He ...

  8. Developing a Custom Membership Provider from the scratch, and using it in the FBA (Form Based Authentication) in SharePoint 2010

    //http://blog.sharedove.com/adisjugo/index.php/2011/01/05/writing-a-custom-membership-provider-and-u ...

  9. [Laravel] 14 - REST API: Laravel from scratch

    前言 一.基础 Ref: Build a REST API with Laravel API resources Goto: [Node.js] 08 - Web Server and REST AP ...

随机推荐

  1. @Transactional spring事务回滚相关

    还可以设置回滚点,看下面 /** * 用户登录接口 * * * 1明确事务方法前的命名规则 * 2保证事务方法执行的时间尽可能的短,不允许出现循环操作,不允许出现RPC等网络请求操作 * 3不允许所有 ...

  2. vm文件

    <html> <head> <title>编队管理</title> </head> <style type="text/cs ...

  3. 第95:PCA

    输入数据矩阵->计算每条记录的平均值和标准差->计算协方差矩阵->得到协方差矩阵的所有特征值和特征向量->对特征值进行从大到小的排序,并且得到与之对应的特征向量 PCA是无监督 ...

  4. springboot启动端口占用问题,报错org.apache.catalina.LifecycleException: Protocol handler start failed

    解决办法,找到被占用的端口

  5. Java注解的继承

    注解继承的说明 1.首先要想Annotation能被继承,需要在注解定义的时候加上@Inherited,并且如果要被反射应用的话,就需要还有个事@Retention(RetentionPolicy.R ...

  6. MySQL面试题(二)

    ● 请你说一说mysql的四种隔离状态 参考回答: Mysql主要包含四种隔离状态: 事务隔离级别 脏读 不可重复读 幻读 读未提交(read-uncommitted) 是 是 是 不可重复读(rea ...

  7. 3.1.2-arm-linux-ld选项

    有文件link.S,内容如下 .text .global _start _start: b step1 step1: ldr pc, =step2 step2: b step2 经过如下命令编译 ar ...

  8. 全球首次!玩5G日本来了一波骚操作

    5G基站信号覆盖范围较小是5G技术应用中需要面临的问题之一,从目前的报道来看,在人口密集的城市中其理想覆盖范围只有250米左右,这也就意味着5G基站的数量和密度相比4G要成倍的增加. 可以想象,当5G ...

  9. cmd窗口颜色设置

    color  02    第一个数字是背景颜色,第二个是文字颜色.

  10. arm开发板make编译时遇到 make[2]:*** [s-attrtab] 已杀死 问题的解决方案

    未验证 出现“make[2]: *** [s-attrtab] 已杀死”log 是由于内存不足 解决方案 增加swapfile 步骤如下: 1. 查看当前swapfile状态 root@ubuntu: ...