GANs from Scratch 1: A deep introduction. With code in PyTorch and TensorFlow

修改文章代码中的错误后的代码如下:

import torch
from torch import nn, optim
from torch.autograd.variable import Variable
from torchvision import transforms, datasets
import matplotlib.pyplot as plt DATA_FOLDER = 'D:/WorkSpace/Data/torchvision_data' def mnist_data():
compose = transforms.Compose(
[transforms.ToTensor(),
# transforms.Normalize((.5, .5, .5), (.5, .5, .5))
transforms.Normalize([0.5], [0.5]) # MNIST只有一个通道
])
return datasets.MNIST(root=DATA_FOLDER, train=True, transform=compose) # Load data
data = mnist_data()
# Create loader with data, so that we can iterate over it
data_loader = torch.utils.data.DataLoader(data, batch_size=64, shuffle=True)
# Num batches
num_batches = len(data_loader) class DiscriminatorNet(torch.nn.Module):
"""
A three hidden-layer discriminative neural network
""" def __init__(self):
super(DiscriminatorNet, self).__init__()
n_features = 784
n_out = 1 self.hidden0 = nn.Sequential(
nn.Linear(n_features, 1024),
nn.LeakyReLU(0.2),
nn.Dropout(0.3)
)
self.hidden1 = nn.Sequential(
nn.Linear(1024, 512),
nn.LeakyReLU(0.2),
nn.Dropout(0.3)
)
self.hidden2 = nn.Sequential(
nn.Linear(512, 256),
nn.LeakyReLU(0.2),
nn.Dropout(0.3)
)
self.out = nn.Sequential(
torch.nn.Linear(256, n_out),
torch.nn.Sigmoid()
) def forward(self, x):
x = self.hidden0(x)
x = self.hidden1(x)
x = self.hidden2(x)
x = self.out(x)
return x def images_to_vectors(images):
return images.view(images.size(0), 784) def vectors_to_images(vectors):
return vectors.view(vectors.size(0), 1, 28, 28) class GeneratorNet(torch.nn.Module):
"""
A three hidden-layer generative neural network
""" def __init__(self):
super(GeneratorNet, self).__init__()
n_features = 100
n_out = 784 self.hidden0 = nn.Sequential(
nn.Linear(n_features, 256),
nn.LeakyReLU(0.2)
)
self.hidden1 = nn.Sequential(
nn.Linear(256, 512),
nn.LeakyReLU(0.2)
)
self.hidden2 = nn.Sequential(
nn.Linear(512, 1024),
nn.LeakyReLU(0.2)
) self.out = nn.Sequential(
nn.Linear(1024, n_out),
nn.Tanh()
) def forward(self, x):
x = self.hidden0(x)
x = self.hidden1(x)
x = self.hidden2(x)
x = self.out(x)
return x # Noise
def noise(size):
n = Variable(torch.randn(size, 100))
if torch.cuda.is_available(): return n.cuda()
return n discriminator = DiscriminatorNet()
generator = GeneratorNet()
if torch.cuda.is_available():
discriminator.cuda()
generator.cuda() # Optimizers
d_optimizer = optim.Adam(discriminator.parameters(), lr=0.0002)
g_optimizer = optim.Adam(generator.parameters(), lr=0.0002) # Loss function
loss = nn.BCELoss() # Number of steps to apply to the discriminator
d_steps = 1 # In Goodfellow et. al 2014 this variable is assigned to 1
# Number of epochs
num_epochs = 200 def real_data_target(size):
'''
Tensor containing ones, with shape = size
'''
data = Variable(torch.ones(size, 1))
if torch.cuda.is_available(): return data.cuda()
return data def fake_data_target(size):
'''
Tensor containing zeros, with shape = size
'''
data = Variable(torch.zeros(size, 1))
if torch.cuda.is_available(): return data.cuda()
return data def train_discriminator(optimizer, real_data, fake_data):
# Reset gradients
optimizer.zero_grad() # 1.1 Train on Real Data
prediction_real = discriminator(real_data)
# Calculate error and backpropagate
error_real = loss(prediction_real, real_data_target(real_data.size(0)))
error_real.backward() # 1.2 Train on Fake Data
prediction_fake = discriminator(fake_data)
# Calculate error and backpropagate
error_fake = loss(prediction_fake, fake_data_target(real_data.size(0)))
error_fake.backward() # 1.3 Update weights with gradients
optimizer.step() # Return error
return error_real + error_fake, prediction_real, prediction_fake def train_generator(optimizer, fake_data):
# 2. Train Generator
# Reset gradients
optimizer.zero_grad()
# Sample noise and generate fake data
prediction = discriminator(fake_data)
# Calculate error and backpropagate
error = loss(prediction, real_data_target(prediction.size(0)))
error.backward()
# Update weights with gradients
optimizer.step()
# Return error
return error num_test_samples = 16
test_noise = noise(num_test_samples) for epoch in range(num_epochs):
for n_batch, (real_batch,_) in enumerate(data_loader): # 1. Train Discriminator
real_data = Variable(images_to_vectors(real_batch))
if torch.cuda.is_available(): real_data = real_data.cuda()
# Generate fake data
fake_data = generator(noise(real_data.size(0))).detach()
# Train D
d_error, d_pred_real, d_pred_fake = train_discriminator(d_optimizer,
real_data, fake_data) # 2. Train Generator
# Generate fake data
fake_data = generator(noise(real_batch.size(0)))
# Train G
g_error = train_generator(g_optimizer, fake_data) # Display Progress
print('epoch ', epoch, ': ','d_error is ', d_error, 'g_error is ', g_error)
if (epoch) % 20 == 0:
test_images = vectors_to_images(generator(test_noise)).data.cpu()
fig = plt.figure()
for i in range(len(test_images)):
ax = fig.add_subplot(4, 4, i+1)
ax.imshow(test_images[i][0], cmap=plt.cm.gray)
plt.show()

Implement GAN from scratch的更多相关文章

  1. 机器学习算法之旅A Tour of Machine Learning Algorithms

    In this post we take a tour of the most popular machine learning algorithms. It is useful to tour th ...

  2. ML-学习提纲2

    https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/ http://blog.csdn.net/u0110 ...

  3. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

  4. [RxJS] Implement the `map` Operator from Scratch in RxJS

    While it's great to use the RxJS built-in operators, it's also important to realize you now have the ...

  5. How to implement an algorithm from a scientific paper

    Author: Emmanuel Goossaert 翻译 This article is a short guide to implementing an algorithm from a scie ...

  6. A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)

    A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON  ...

  7. Learning WCF Chapter1 Creating a New Service from Scratch

    You’re about to be introduced to the WCF service. This lab isn’t your typical “Hello World”—it’s “He ...

  8. Developing a Custom Membership Provider from the scratch, and using it in the FBA (Form Based Authentication) in SharePoint 2010

    //http://blog.sharedove.com/adisjugo/index.php/2011/01/05/writing-a-custom-membership-provider-and-u ...

  9. [Laravel] 14 - REST API: Laravel from scratch

    前言 一.基础 Ref: Build a REST API with Laravel API resources Goto: [Node.js] 08 - Web Server and REST AP ...

随机推荐

  1. python实现更换电脑桌面壁纸,锁屏,文件加密方式

    python实现更换壁纸和锁屏代码 #控制windows系统 import win32api,win32con,win32gui # 可以利用python去调用dll动态库的包.嵌入式开发 from ...

  2. Java工具类-基于SnowFlake的短地址生成器

    Twitter的SnowFlake算法,使用SnowFlake算法生成一个整数,然后转化为62进制变成一个短地址URL /** * Twitter的SnowFlake算法,使用SnowFlake算法生 ...

  3. C#中static修饰符的作用

    static在C#中表示的是静态的,比如一个静态的字段是归类型所有,而非归对象所有,也就是说,在调用这个字段时,只能用类型去调,而不能用对象. 实例字段时随着对象创建而创建,对象销毁而销毁,而静态字段 ...

  4. EJS学习(三)之语法规则中

    ⚠️实例均结合node,也就是AMD规范版本 ejs中使用render()表示渲染文本 接收三个参数:模版字符串.data.options,返回一个字符串 const ejs = require('e ...

  5. bootstrap之响应式布局

    1.手动配置viewport 在HTML中: <meta name="viewport" content="width=device-width,initial-s ...

  6. vue--微信支付

    1.当前页面没有注册: 需要登录微信支付商家后台,添加支付路径授权 2.安装 weixin-js-sdk 微信SDK npm install weixin-js-sdk --save 3.引入 imp ...

  7. Linux版本显示和区别32位还是64位系统

    查看已经安装的Linux版本信息 1.cat /etc/issue 查看版本 [root@master master]# cat /etc/issue \S Kernel \r on an \m 2. ...

  8. Js 将图片的绝对路径转换为base64编码(3)

    图片文件改变一方法:$('#file').change(function(){var oFReader = new FileReader();oFReader.readAsDataURL(this.f ...

  9. 异常-User class threw exception: java.lang.IllegalStateException: Cannot call methods on a stopped SparkContext.

    1 详细信息 User class threw exception: java.lang.IllegalStateException: Cannot call methods on a stopped ...

  10. 18、nginx优化

    一.性能优化概述 基询imm能优化,那么在性能优化这一章,我们将分为如下几个方面做介绍 1.首先我们需要了解性能优化要考虑哪些方面. 2.然后我们需要了解性能优化必须要用到的压力测试工具ab. 3.最 ...