【HDU6703】array
题目大意:给定一个 N 个数字的排列,需要支持两种操作:对某个位置的数字 + 1e7,查询区间 [1, r] 中最小的不等于区间中任何一个数字的数。
题解:本题证明了对于 50W 的数据来说,\(O(nlog^2n)\) 的算法是过不去的。。
首先,最暴力的做法就是树状数组套权值线段树,实现了支持单点修改的主席树功能,但是复杂度爆炸了。
- 题目中所给的排列这一条件,可知没有两个数字是相同的。
- 由于询问的 k 小于 N,因此单点修改操作可以看成是删除了那个位置的数字。因此,可以发现答案一定在区间 [k, n + 1] 中。
解法1:
利用性质一,在序列上建立主席树,并增加一个 set,用来记录所有被删除的数字。每次询问时,可以询问区间 [r + 1, n + 1] 中大于 K 的最小值是多少,同时,在 set 中也二分一个大于 k 的最小值。可知,两者中最小的就是答案。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10;
int n, m, a[maxn];
set<int> s;
struct node {
#define ls(o) t[o].lc
#define rs(o) t[o].rc
int lc, rc, sz;
} t[maxn * 20];
int tot, rt[maxn];
void insert(int &o, int p, int l, int r, int pos) {
o = ++tot;
t[o] = t[p];
if (l == r) {
t[o].sz++;
return;
}
int mid = l + r >> 1;
if (pos <= mid) {
insert(ls(o), ls(p), l, mid, pos);
} else {
insert(rs(o), rs(p), mid + 1, r, pos);
}
t[o].sz = t[ls(o)].sz + t[rs(o)].sz;
}
int query(int o, int p, int l, int r, int k) {
if (l == r) {
return l;
}
int mid = l + r >> 1;
int lsz = t[ls(o)].sz - t[ls(p)].sz, rsz = t[rs(o)].sz - t[rs(p)].sz;
int ret = -1;
if (k <= mid && lsz != 0) {
ret = query(ls(o), ls(p), l, mid, k);
}
if (ret != -1) {
return ret;
}
if (rsz != 0) {
ret = query(rs(o), rs(p), mid + 1, r, k);
}
return ret;
}
void read() {
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
insert(rt[i], rt[i - 1], 1, n + 1, a[i]);
}
insert(rt[n + 1], rt[n], 1, n + 1, n + 1);
}
void solve() {
int lastans = 0;
while (m--) {
static int opt;
scanf("%d", &opt);
if (opt == 1) {
static int pos;
scanf("%d", &pos);
pos ^= lastans;
s.insert(a[pos]);
} else {
static int r, k;
scanf("%d %d", &r, &k);
r ^= lastans, k ^= lastans;
int ret = query(rt[r], rt[n + 1], 1, n + 1, k);
auto it = s.lower_bound(k);
if (it != s.end()) {
ret = min(ret, *it);
}
printf("%d\n", ret);
lastans = ret;
}
}
}
void initial() {
for (int i = 1; i <= tot; i++) {
t[i].lc = t[i].rc = t[i].sz = 0;
}
for (int i = 1; i <= n + 1; i++) {
rt[i] = 0;
}
tot = 0;
s.clear();
}
int main() {
int T;
scanf("%d", &T);
while (T--) {
initial();
read();
solve();
}
return 0;
}
解法二:
根据性质二,可知答案区间一定是连续的。考虑建立权值线段树,维护序列下标的最大值。对于每次查询,转化成查询区间 [k, n + 1] 中下标大于 r 的最小权值。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10;
int n, m, a[maxn];
struct node {
#define ls(o) t[o].lc
#define rs(o) t[o].rc
int lc, rc, mx;
} t[maxn << 1];
int tot, rt;
inline void pull(int o) {
t[o].mx = max(t[ls(o)].mx, t[rs(o)].mx);
}
void insert(int &o, int l, int r, int pos, int val) {
if (o == 0) {
o = ++tot;
}
if (l == r) {
t[o].mx = val;
return;
}
int mid = l + r >> 1;
if (pos <= mid) {
insert(ls(o), l, mid, pos, val);
} else {
insert(rs(o), mid + 1, r, pos, val);
}
pull(o);
}
void modify(int o, int l, int r, int pos) {
if (l == r) {
t[o].mx = 1e9;
return;
}
int mid = l + r >> 1;
if (pos <= mid) {
modify(ls(o), l, mid, pos);
} else {
modify(rs(o), mid + 1, r, pos);
}
pull(o);
}
int query(int o, int l, int r, int x, int y) { // x -> [x, n + 1] y -> >= y
if (l == r) {
return l;
}
int mid = l + r >> 1;
int ret = -1;
if (x <= mid && t[ls(o)].mx >= y) {
ret = query(ls(o), l, mid, x, y);
}
if (ret != -1) {
return ret;
}
if (t[rs(o)].mx >= y) {
ret = query(rs(o), mid + 1, r, x, y);
}
return ret;
}
void read() {
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
insert(rt, 1, n + 1, a[i], i);
}
a[n + 1] = n + 1;
insert(rt, 1, n + 1, n + 1, n + 1);
}
void solve() {
int lastans = 0;
while (m--) {
static int opt;
scanf("%d", &opt);
if (opt == 1) {
static int pos;
scanf("%d", &pos);
pos ^= lastans;
modify(rt, 1, n + 1, a[pos]);
} else {
static int r, k;
scanf("%d %d", &r, &k);
r ^= lastans;
k ^= lastans;
lastans = query(rt, 1, n + 1, k, r + 1);
printf("%d\n", lastans);
}
}
}
void initial() {
for (int i = 1; i <= tot; i++) {
t[i].lc = t[i].rc = t[i].mx = 0;
}
rt = tot = 0;
}
int main() {
int T;
scanf("%d", &T);
while (T--) {
initial();
read();
solve();
}
return 0;
}
【HDU6703】array的更多相关文章
- 题解【UVA12003】Array Transformer
题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例#1 10 1 11 1 2 3 4 5 6 7 8 9 10 2 8 6 10 输出样例#1 1 2 3 4 5 6 7 8 9 6 ...
- 【Java】Array 数组
概述 数组是多个相同数据类型按一定顺序排列的一组数据 特点: - 数据类型相同!! - 长度固定!! 构成数组的几个要素 - 数组名称 - 下标,又称索引 - 元素 - 数组长度 数组是一种引用类型, ...
- 【总结】Array、ArrayList、List
一.Array(数组) 1.申明时必须要指定数组长度. 2.数据类型安全. 申明数组如下: 1 class Program 2 { 3 static void Main(string[] args) ...
- 【C++】array初始化0
让代码...优雅? ==================分割线==================== 局部数组:没有默认值,如果声明的时候不定义,则会出现随机数(undefined):如果声明的长度 ...
- 【R】array 2 string
paste(1:10, collapse = '') http://stackoverflow.com/questions/2098368/how-do-i-concatenate-a-vector- ...
- 【CF1023D】Array Restoration(构造,线段树)
题意:有一个长为n的序列,对其进行q次操作,第i次操作可以把连续的一段覆盖为i 现在给出操作后的序列,第i个数字为a[i],其中有一些为0的位置可以为任意值,要求构造任意一组合法的操作后的序列 无解输 ...
- 【CF1068D】Array Without Local Maximums(计数DP)
题意: n<=1e5 思路:卡内存 dp[i][j][k]表示当前第i个数字为j,第i-1个数字与第i个之间大小关系为k的方案数(a[i-1]<a[i],=,>) 转移时使用前缀和和 ...
- 【LeetCode】Array
[11] Container With Most Water [Medium] O(n^2)的暴力解法直接TLE. 正确的解法是Two Pointers. O(n)的复杂度.保持两个指针i,j:分别指 ...
- 【计数dp】Array Without Local Maximums
参考博客:[CF1068D]Array Without Local Maximums(计数DP) [题意] n<=1e5 dp[i][j][k]表示当前第i个数字为j,第i-1个数字与第i个之间 ...
随机推荐
- 解决pip安装第三方包编码错误:UnicodeDecodeError: 'ascii' codec can't decode byte....
.../python27/Lib/mimetypes.py 在 import之后添加下列内容 if sys.getdefaultencoding() != 'gbk': reload(sys) sys ...
- 学习shell的第一天
1.命令历史 作用:查之前使用的命令 关于命令历史的文件 每个用户家目录下面的 .bash_history 在关机的时候,会自动写入一次 (history -a 将内存中的命令历史写入文件) ...
- 坦克大战--Java类型 ---- (3)实现socket通信
一.实现思路 使用socket通信的一些方法来实现socket通信,客户端和服务端两边需要约定好通信的接口Port(尽量选高的),客户端需要服务端的IP地址,以实现数据交流. 同时,客户端和服务端需要 ...
- c++学习笔记之类和对象(三、static静态成员变量和静态成员函数)
一.static静态成员变量 对象的内存中包含了成员变量,不同的对象占用不同的内存,这使得不同对象的成员变量相互独立,它们的值不受其他对象的影响.是有时候我们希望在多个对象之间共享数据,对象 a 改变 ...
- CSP 画图(201512-3)
问题描述 用 ASCII 字符来画图是一件有趣的事情,并形成了一门被称为 ASCII Art 的艺术.例如,下图是用 ASCII 字符画出来的 CSPRO 字样. ..____.____..____. ...
- 小白学习tornado第二站-tornado简单介绍
tornado基本web应用结构 分为两大块类 Application对象(只会实例化一次) 路由表URl映射 (r'/', MainHandler) 关键词参数settings RequestHan ...
- md5sum、tailf命令
一.md5sum:计算和校验文件的md5值 语法 md5sum [选项] ... [文件] ... 描述 打印或检查MD5(128位)校验和.没有FILE或FILE为 ...
- etcd集群安装
etcd 是一个分布式一致性k-v存储系统,可用于服务注册发现与共享配置,具有以下优点:1.简单:相比于晦涩难懂的paxos算法,etcd基于相对简单且易实现的raft算法实现一致性,并通过gRPC提 ...
- NIO、BIO、AIO
BIO(同步阻塞):Socket编程就是 BIO ,操作时会阻塞线程,并发处理能力低 .阻塞的原因在于:操作系统允许的线程数量是有限的,多个socket申请与服务端建立连接时,服务端不能提供相应数量的 ...
- AWS In Action
Core Services of AWS Elastic Cloud Compute(EC2) Simple Storage Service(S3) Relational Database Servi ...