Minimum Inversion Number

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence) 
a2, a3, ..., an, a1 (where m = 1) 
a3, a4, ..., an, a1, a2 (where m = 2) 
... 
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.

 

Input

The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1. 
 

Output

For each case, output the minimum inversion number on a single line. 
 

Sample Input

10
1 3 6 9 0 8 5 7 4 2
 

Sample Output

16
 

 #include <stdio.h>
#include <algorithm> using namespace std; int a[];
struct Node{
int l,r,num;
}tree[]; void Build(int n,int x,int y){
tree[n].l = x;
tree[n].r = y;
tree[n].num = ;
if(x == y){
return;
}
int mid = (x + y) / ;
Build(*n,x,mid);
Build(*n+,mid+,y);
} void Modify(int n,int x){
int l = tree[n].l;
int r = tree[n].r;
int mid = (l + r) / ;
if(x == l && x == r){
tree[n].num = ;
return;
}
if(x <= mid) Modify(*n,x);
else Modify(*n+,x);
tree[n].num = tree[*n].num + tree[*n+].num;
} int Query(int n,int x,int y){
int l = tree[n].l;
int r = tree[n].r;
int mid = (l + r) / ;
int ans = ;;
if(x == l && y == r)
return tree[n].num;
if(x <= mid) ans += Query(*n,x,min(mid,y));
if(y > mid) ans += Query(*n+,max(mid+,x),y);
return ans;
}
int main(){
//freopen ("a.txt" , "r" , stdin ) ;
int n,sum,ans;
int i,j; while(scanf("%d",&n) != EOF){
sum = ;
Build(,,n);
for(i = ;i <= n;i++){
scanf("%d",&a[i]);
Modify(,a[i]);
sum += Query(,a[i]+,n);
}
ans = sum;
for(i = ;i < n;i++){
sum = sum + (n - - a[i]) - a[i];
if(sum < ans)
ans = sum;
}
printf("%d\n",ans);
}
}

Minimum Inversion Number的更多相关文章

  1. HDU 1394 Minimum Inversion Number ( 树状数组求逆序数 )

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 Minimum Inversion Number                         ...

  2. HDU 1394 Minimum Inversion Number(最小逆序数 线段树)

    Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...

  3. HDU 1394 Minimum Inversion Number(最小逆序数/暴力 线段树 树状数组 归并排序)

    题目链接: 传送门 Minimum Inversion Number Time Limit: 1000MS     Memory Limit: 32768 K Description The inve ...

  4. ACM Minimum Inversion Number 解题报告 -线段树

    C - Minimum Inversion Number Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d &a ...

  5. 【hdu1394】Minimum Inversion Number

    Problem Description The inversion number of a given number sequence a1, a2, ..., an is the number of ...

  6. [hdu1394]Minimum Inversion Number(树状数组)

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  7. HDU-1394 Minimum Inversion Number 线段树+逆序对

    仍旧在练习线段树中..这道题一开始没有完全理解搞了一上午,感到了自己的shabi.. Minimum Inversion Number Time Limit: 2000/1000 MS (Java/O ...

  8. 逆序数2 HDOJ 1394 Minimum Inversion Number

    题目传送门 /* 求逆序数的四种方法 */ /* 1. O(n^2) 暴力+递推 法:如果求出第一种情况的逆序列,其他的可以通过递推来搞出来,一开始是t[1],t[2],t[3]....t[N] 它的 ...

  9. HDU 1394 Minimum Inversion Number(线段树/树状数组求逆序数)

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

随机推荐

  1. WPF ListView DoubleClick

    <ListView   x:Name="TrackListView"  MouseDoubleClick="MouseDoubleClick"       ...

  2. 【niubi-job——一个分布式的任务调度框架】----如何开发一个niubi-job的定时任务

    引言 上篇文章LZ主要讲解了niubi-job如何安装,如果看过上一篇文章的话,大家应该知道,niubi-job执行的任务是需要用户自己上传jar包的. 那么问题来了,这个jar包如何产生?有没有要求 ...

  3. JS闭包文章--(翻译)Callbacks in Loops

    原文地址:http://tobyho.com/2011/11/02/callbacks-in-loops/ 某些时候,你需要在循环里创建一个回调函数.我们来试试给页面里每个链接增加点击事件. var ...

  4. 状态机——Javascript词法扫描示例

    所谓的状态机实质其实很很简单,其存在的目的也是把大量复杂的处理分散,使处理变得简单化一些.状态机只有一个当前状态,并且在当前状态下根据输入进行处理,然后再决定是否改变当前状态,然后再处理下一个输入,如 ...

  5. CSS3之过渡Transition

    CSS3中的过渡Transition有四个中心属性:transition-property.transition-duration.transition-delay和transition-timing ...

  6. (好文推荐)一篇文章看懂JavaScript作用域链

    闭包和作用域链是JavaScript中比较重要的概念,首先,看看几段简单的代码. 代码1: var name = "stephenchan"; var age = 23; func ...

  7. 【转】Oracle之物化视图

    原文地址:http://www.cnblogs.com/Ronger/archive/2012/03/28/2420962.html 物化视图是一种特殊的物理表,“物化”(Materialized)视 ...

  8. JS高级设计第七章——复习知识点

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. yii授权

    ACF (访问控制过滤器) 在你控制器的添加下列的 行为 方法 use yii\filters\AccessControl; class DefaultController extends Contr ...

  10. Java NIO、NIO.2学习笔记

    相关学习资料 http://www.molotang.com/articles/903.html http://www.ibm.com/developerworks/cn/education/java ...