NOI2011阿狸的打字机(fail树+DFS序)
Description
阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机。打字机上只有28个按键,分别印有26个小写英文字母和'B'、'P'两个字母。
经阿狸研究发现,这个打字机是这样工作的:
l 输入小写字母,打字机的一个凹槽中会加入这个字母(这个字母加在凹槽的最后)。
l 按一下印有'B'的按键,打字机凹槽中最后一个字母会消失。
l 按一下印有'P'的按键,打字机会在纸上打印出凹槽中现有的所有字母并换行,但凹槽中的字母不会消失。
例如,阿狸输入aPaPBbP,纸上被打印的字符如下:
a
aa
ab
我们把纸上打印出来的字符串从1开始顺序编号,一直到n。打字机有一个非常有趣的功能,在打字机中暗藏一个带数字的小键盘,在小键盘上输入两个数(x,y)(其中1≤x,y≤n),打字机会显示第x个打印的字符串在第y个打印的字符串中出现了多少次。
阿狸发现了这个功能以后很兴奋,他想写个程序完成同样的功能,你能帮助他么?
Input
输入的第一行包含一个字符串,按阿狸的输入顺序给出所有阿狸输入的字符。
第二行包含一个整数m,表示询问个数。
接下来m行描述所有由小键盘输入的询问。其中第i行包含两个整数x, y,表示第i个询问为(x, y)。
Output
输出m行,其中第i行包含一个整数,表示第i个询问的答案。
Sample Input
3
1 2
1 3
2 3
Sample Output
1
0
HINT
1<=N<=10^5
fail树是这样一个东西:将AC自动机的fail指针连成一棵树(根节点为虚拟节点0)。
这样有什么好处呢?匹配时沿着fail树向上找就能找到所有匹配位置了:
void find(char* s)
{
int j=,c;
for(int i=;s[i]!='\0';i++)
{
c=s[i]-'a';
while(j&&!ch[j][c]) j=f[j];
for(int t=j;t;t=f[t]) if(val[t]) cnt[val[t]]++;
}
}
也就是说,对于一个节点c从root(0)走向c连成的字符串(模板串),一个节点v从root(0)走向v连成的字符串(匹配串),匹配串在模板串中出现的次数就是root->c的路径上的节点有多少出现在节点v的子树中。
这样我们只需维护DFS序即可。
那么这道题的做法就水落石出了:
首先构建AC自动机的fail树得出dfs序,得出每个结点进出时间l[x],r[x],考虑这样一种暴力
对于一个询问x,y,查询自动机上root-y的每一个结点,沿着fail指针是否会走到x的结尾点,如果可以即答案+1
那么就变为在fail树中,查询自动机上root-y的所有结点中,有多少个在x的子树中。
只要在自动机上再重新走一遍,走到一个结点y,则将1-l[y]都+1。解决询问x,y(把y相同的链表串起来),即查询l[x]到r[x]的和。当遇到一个B时1-l[y]都-1。
只需树状数组实现加减和区间求和
随便写了写,竟然在BZOJ上rank1了,我很开心
#include<cstdio>
#include<cctype>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
inline int read()
{
int x=,f=;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-;
for(;isdigit(c);c=getchar()) x=x*+c-'';
return x*f;
}
void print(int x)
{
if(!x) {putchar('');putchar('\n');return;}
int len=,buf[];
while(x) buf[++len]=x%,x/=;
for(int i=len;i;i--) putchar(buf[i]+'');
putchar('\n');
}
const int maxn=;
int ch[maxn][],fa[maxn],f[maxn],pos[maxn],id,sz;
void insert(char* s)
{
int j=,c;
for(int i=;s[i];i++)
{
c=s[i]-'a';
if(s[i]=='P') pos[++id]=j;
else if(s[i]=='B') j=fa[j];
else
{
if(!ch[j][c]) ch[j][c]=++sz,fa[sz]=j;
j=ch[j][c];
}
}
}
queue<int> q;
void getfail()
{
for(int c=;c<;c++) if(ch[][c]) q.push(ch[][c]);
while(!q.empty())
{
int u=q.front(),v;q.pop();
for(int c=;c<;c++) if(v=ch[u][c])
{
q.push(v);int j=f[u];
while(j&&!ch[j][c]) j=f[j];
f[v]=ch[j][c];
}
}
}
int first[maxn],next[maxn],to[maxn],e;
void AddEdge(int u,int v){to[++e]=v;next[e]=first[u];first[u]=e;}
int l[maxn],r[maxn],cnt;
void dfs(int x)
{
l[x]=++cnt;
for(int i=first[x];i;i=next[i]) dfs(to[i]);
r[x]=++cnt;
}
int sumv[maxn];
void add(int x,int v) {for(;x<=cnt;x+=x&-x) sumv[x]+=v;}
int sum(int x) {int ret=;for(;x;x-=x&-x) ret+=sumv[x];return ret;}
struct Query {int next,v;}Q[maxn];
int firstq[maxn],ans[maxn];
void solve(char* s)
{
int j=,c;add(l[j],);id=;
for(int i=;s[i];i++)
{
c=s[i]-'a';
if(s[i]=='P')
{
id++;for(int x=firstq[id];x;x=Q[x].next)
{
int v=pos[Q[x].v];
ans[x]=sum(r[v])-sum(l[v]-);
}
}
else if(s[i]=='B') add(l[j],-),j=fa[j];
else j=ch[j][c],add(l[j],);
}
}
char s[maxn];
int main()
{
scanf("%s",s);insert(s);getfail();
for(int i=;i<=sz;i++) AddEdge(f[i],i);
dfs();
int m=read();
for(int i=;i<=m;i++)
{
int x=read(),y=read();
Q[i].v=x;Q[i].next=firstq[y];firstq[y]=i;
}
solve(s);
for(int i=;i<=m;i++) print(ans[i]);
return ;
}
NOI2011阿狸的打字机(fail树+DFS序)的更多相关文章
- BZOJ 2434: [Noi2011]阿狸的打字机( AC自动机 + DFS序 + 树状数组 )
一个串a在b中出现, 那么a是b的某些前缀的后缀, 所以搞出AC自动机, 按fail反向建树, 然后查询(x, y)就是y的子树中有多少是x的前缀. 离线, 对AC自动机DFS一遍, 用dfs序+树状 ...
- 【BZOJ2434】[NOI2011]阿狸的打字机 AC自动机+DFS序+树状数组
[BZOJ2434][NOI2011]阿狸的打字机 Description 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P ...
- BZOJ2434[Noi2011]阿狸的打字机——AC自动机+dfs序+树状数组
题目描述 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母. 经阿狸研究发现,这个打字机是这样工作的: l 输入小 ...
- 【BZOJ 2434】 [Noi2011]阿狸的打字机 fail树+树状数组
就是考了一个fail树的神奇应用我们建出fail树之后,发现我们就是在求y到根的路径上所有的点在以x为根的子树里的个数,这个我们离线后用树状数组+dfs序即可解决 #include <cstdi ...
- NOI 2011 阿狸的打字机 (AC自动机+dfs序+树状数组)
题目大意:略(太长了不好描述) 良心LOJ传送门 先对所有被打印的字符串建一颗Trie树 观察数据范围,并不能每次打印都从头到尾暴力建树,而是每遍历到一个字符就在Trie上插入这个字符,然后记录每次打 ...
- [NOI2011][bzoj2434] 阿狸的打字机 [AC自动机+dfs序+fail树+树状数组]
题面 传送门 正文 最暴力的 最暴力的方法:把所有询问代表的字符串跑一遍kmp然后输出 稍微优化一下:把所有询问保存起来,把模板串相同的合并,求出next然后匹配 但是这两种方法本质没有区别,都是暴力 ...
- 【BZOJ-2434】阿狸的打字机 AC自动机 + Fail树 + DFS序 + 树状数组
2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2022 Solved: 1158[Submit][Sta ...
- BZOJ2434 [Noi2011]阿狸的打字机(AC自动机 + fail树 + DFS序 + 线段树)
题目这么说的: 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母.经阿狸研究发现,这个打字机是这样工作的: 输入小 ...
- BZOJ2434: [Noi2011]阿狸的打字机(fail树+dfs序)
Description 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母. 经阿狸研究发现,这个打字机是这样工作的 ...
随机推荐
- POJ 2418
http://poj.org/problem?id=2418 这是一个二叉树的题目,但我看了下书,还是不是特别理解会用二叉树,所以我就用其他的办法来做,结果一样AC,时间也就1700多ms,比起二叉树 ...
- windows下安装coreseek/sphinx
2013年12月8日 17:26:26 注意的地方: 1.配置文件的 数据源, 索引, 服务 这3处配置的路径要写成windows识别的路径,最好是绝对路径 2.安装windows服务的时候,可以不带 ...
- 利用WinHEX,重构狂牛加密视频1.0.0.1【只适合RIFF(AVI)】
幸亏是视频部分没有进行加密 1.用 WinHEX 打开狂牛加密视频, 查找 [RIFF] 字符串 2.光标放在 RIFF的 [R]上面, 按 CTRL+SHIFT+END 3.把选择的块写入新文件 H ...
- DroidDraw - Android的界面设计工具
ADT中的界面开发工具实在是很烂,通常情况下都需要硬编码,对于程序员来说不但效率比较低下,而且调试起来极其不方便,还好在Google未推出GUI的"所见即所得"的工具之前,我们找到 ...
- canvas API ,通俗的canvas基础知识(三)
全文说到了三角形,圆形等相关图形的画法,不熟悉的同学可以出门右转,先看看前文,接下来继续我们的图形——曲线. 学过数学,或者是比较了解js 的同学都知道贝塞尔曲线,当然,在数学里面,这是一门高深的学问 ...
- 【贪心】最大乘积-贪心-高精度-java
问题 G: [贪心]最大乘积 时间限制: 1 Sec 内存限制: 128 MB提交: 34 解决: 10[提交][状态][讨论版] 题目描述 一个正整数一般可以分为几个互不相同的自然数的和,如3 ...
- linux下重启tomcat、实时查看tomcat运行日志
在Linux系统下,重启Tomcat使用命令操作的! 首先,进入Tomcat下的bin目录 cd /usr/local/tomcat/bin 使用Tomcat关闭命令 ./shutdown.sh 查看 ...
- iOS PickerView动态加载数据
将新的数据放入临时数组 NSMutableArray *tmp=[[NSMutableArray alloc] init]; [tmp addObject:[[NSString alloc] init ...
- [Android Pro] 监听WIFI 打开广播
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/> <uses-perm ...
- win32_11gR2_database安装教程