试题描述

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
    每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
    因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
    例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

输入
包括两行,第一行是一个整数n(1<=n<=10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。
输出
包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。
输入示例

1 2 9
输出示例
15
其他说明
数据范围:保证有n<=10000。

哈夫曼树啦,贪心策略谁都能想到吧

写个Treap,竟然WA了一发TAT

#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define lc ch[x][0]
#define rc ch[x][1]
#define rep(s,t) for(int i=s;i<=t;i++)
#define ren for(int i=first[x];i!=-1;i=next[i])
using namespace std;
inline int read() {
int x=,f=;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-;
for(;isdigit(c);c=getchar()) x=x*+c-'';
return x*f;
}
const int maxn=;
struct Node {
Node* ch[];
int r,v;
}nodes[maxn],*null=&nodes[],*root=null;
queue<Node*> Q;int ToT;
Node* newnode(int v) {
Node* o;
if(Q.empty()) o=&nodes[++ToT];
else o=Q.front(),Q.pop();
o->v=v;o->r=rand();o->ch[]=o->ch[]=null;
return o;
}
void del(Node* &o) {Q.push(o);o=null;}
void rotate(Node* &o,int d) {
Node* k=o->ch[d^];o->ch[d^]=k->ch[d];k->ch[d]=o;o=k;
}
void insert(Node* &o,int v) {
if(o==null) o=newnode(v);
else {
int d=v>o->v;insert(o->ch[d],v);
if(o->ch[d]->r>o->r) rotate(o,d^);
}
}
void remove(Node* &o,int v) {
if(o->v==v) {
Node* k=o;
if(o->ch[]==null) o=o->ch[],del(k);
else if(o->ch[]==null) o=o->ch[],del(k);
else {
int d=o->ch[]->v>o->ch[]->v;
rotate(o,d);remove(o->ch[d],v);
}
}
else remove(o->ch[v>o->v],v);
}
int query(Node* o) {
while(o->ch[]!=null) o=o->ch[];
return o->v;
}
void print(Node* &o) {
if(o==null) return;
print(o->ch[]);
printf("%d ",o->v);
print(o->ch[]);
}
int main() {
int n=read(),ans=;
rep(,n) insert(root,read());
while(--n) {
int x=query(root);remove(root,x);
int y=query(root);remove(root,y);
ans+=x+y;insert(root,x+y);
}
printf("%d\n",ans);
return ;
}

写个利用单调性的做法,竟然又WA了一发233

#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define lc ch[x][0]
#define rc ch[x][1]
#define rep(s,t) for(int i=s;i<=t;i++)
#define ren for(int i=first[x];i!=-1;i=next[i])
using namespace std;
inline int read() {
int x=,f=;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-;
for(;isdigit(c);c=getchar()) x=x*+c-'';
return x*f;
}
const int maxn=;
int A[maxn],f=,B[maxn],l=,r;
int query() {
if(l<=r&&A[f]>B[l]) return B[l++];
return A[f++];
}
int main() {
int n=read(),ans=;
rep(,n) A[i]=read();
sort(A+,A+n+);A[n+]=1e9;
while(--n) {
int x=query(),y=query();
ans+=x+y;B[++r]=x+y;
}
printf("%d\n",ans);
return ;
}

NOIP200406合并果子的更多相关文章

  1. 【noip 2004】 合并果子

    noip2016结束后的第一份代码--优先队列的练习 合并果子 原题在这里 #include <iostream> #include <queue> #include < ...

  2. 合并果子 2004年NOIP全国联赛普及组

    时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆 ...

  3. NOIP2004合并果子

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  4. codevs 1063 合并果子//优先队列

    1063 合并果子 2004年NOIP全国联赛普及组  时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石    题目描述 Description 在一个果园里,多多已经将所有的果 ...

  5. [KOJ6024]合并果子·改(强化版)

    [COJ6024]合并果子·改(强化版) 试题描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多把这些果子堆排成一排,然后所有的果子合成一堆.    每一次合并 ...

  6. [KOJ6023]合并果子·改

    [COJ6023]合并果子·改 试题描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多把这些果子堆排成一排,然后所有的果子合成一堆.    每一次合并,多多可以 ...

  7. [KOJ0574NOIP200406合并果子]

    [COJ0574NOIP200406合并果子] 试题描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆.    每一次合并,多多可以把两 ...

  8. NOIP提高组2004 合并果子题解

    NOIP提高组2004 合并果子题解 描述:在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消 ...

  9. 【NOIP合并果子】uva 10954 add all【贪心】——yhx

    Yup!! The problem name reects your task; just add a set of numbers. But you may feel yourselvesconde ...

随机推荐

  1. android dialog 模拟新浪、腾讯title弹框效果

    http://blog.csdn.net/jj120522/article/details/7764183 首先我们看一下新浪微博的效果(其它就是一个dialog):                点 ...

  2. selenium webdriver的各种driver

    selenium官方加上第三方宣布支持的驱动有很多种:除了PC端的浏览器之外,还支持iphone.Android的driver:大概记录一下selenium支持的各种driver的用途与说明. sel ...

  3. C++类编程(一)const的使用

    设计类时,考虑以下五点 1.构造函数初始化列表 2.函数该不该加const 3.参数传递尽量考虑用引用传递,考虑加不加const 4.返回用不用引用 5.数据尽量放在private,函数尽量放在pub ...

  4. svn 切换默认用户名

    2015年1月19日 15:37:30\ 原文: http://www.2cto.com/os/201307/229325.html linux svn切换用户   1. 临时切换   在所有命令下强 ...

  5. Linux下安装firefox最新版

    Linux刚安装好的时候,默认是火狐浏览器并且版本比较低,我的系统是CentOS,火狐版本号才31,用yum安装的话版本也不是最新,只要从官方网站下载最新版安装就可以了,方法如下: 首先去火狐主页,中 ...

  6. POJ 3977

    Subset Time Limit: 30000MS   Memory Limit: 65536K Total Submissions: 1373   Accepted: 228 Descriptio ...

  7. hdu 1160 FatMouse's Speed 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1160 题目意思:给出一堆老鼠,假设有 n 只(输入n条信息后Ctrl+Z).每只老鼠有对应的weigh ...

  8. Fedora 21 install chrome

    Steps to install Google Chrome on Fedora 21 A. Create google-chrome.repo file Use this command to cr ...

  9. Solr的函数查询(FunctionQuery)

    作用 通过函数查询让我们可以利用 numeric域的值或者与域相关的的某个特定的值的函数,来对文档进行评分. 如何使用 这里主要有两种方法可以使用函数查询,这两种方法都是通过solr http 接口的 ...

  10. pyinstaller--将py文件转化成exe

    首先要注意一下:打包python文件成exe格式这个过程只能在windows环境下运行 1. 直接在命令行用pip安装 pyinstaller pip install pyinstaller</ ...