个人认为比较好的(高端)树形DP,也有可能是人傻

3227: [Sdoi2008]红黑树(tree)

Time Limit: 10 Sec Memory Limit: 128 MB

Submit: 158 Solved: 96

[Submit][Status][Discuss]

Description

  红黑树是一类特殊的二叉搜索树,其中每个结点被染成红色或黑色。若将二叉搜索树结点中的空指针看作是指向一个空结点,则称这类空结点为二叉搜索树的前端结点。并规定所有前端结点的高度为-1。

  一棵红黑树是满足下面“红黑性质”的染色二叉搜索树:

  (1) 每个结点被染成红色或黑色;

  (2) 每个前端结点为黑色结点;

  (3) 任一红结点的子结点均为黑结点;

  (4) 在从任一结点到其子孙前端结点的所有路径上具有相同的黑结点数。

  从红黑树中任一结点x出发(不包括结点x),到达一个前端结点的任意一条路径上的黑结点个数称为结点x的黑高度,记作bh(x)。红黑树的黑高度定义为其根结点的黑高度。

  给定正整数N,试设计一个算法,计算出在所有含有N个结点的红黑树中,红色内结点个数的最小值和最大值。

Input

  输入共一个数N。

Output

  输出共两行。

  第一行为红色内结点个数的最小值,第二行为最大值。

Sample Input

8

Sample Output

1

4

HINT

对于 100% 的数据,1≤N≤5000

Source

这道题啊,想了很久,也调了挺长时间的;
中间请求Claris的帮助,可是Claris说太久没看这道了,记不太清细节了,于是我要了他的代码。。。
Claris早期的代码风格不认直视啊我的天!

题解:

令f【i】【j】【0,1】表示 包含i个非前端节点的节点,黑高度为j的,红根/黑根 红黑树中的最小/最大红节点数。

于是得到转移:

f[i][j][0]=min/max(f[i][j][0],f[k][j-1][1]+f[i-k-1][j-1][1]+1);

f[i][j][1]=min/max(f[i][j][1],min/max(f[k][j-1][1]+f[i-k-1][j-1][1],min/max(f[k][j][0]+f[i-k-1][j][0],f[k][j][0]+f[i-k-1][j-1][1])));

然后做好初始化即可;

code:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int read()
{
int x=0,f=1; char ch=getchar();
while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
} #define maxn 6020
int n;
int f[maxn][32][2];
int maxans,minans; int main()
{
n=read();
maxans=-0x7fffffff;minans=0x7fffffff;
memset(f,0x3f,sizeof f);
f[1][1][0]=1;f[1][1][1]=0;f[2][1][1]=1;
for (int i=1; i<=n; i++)
for (int j=1; j<=i; j++)
if (1<<j > n<<2) break; else
for (int k=0; k<=i-2; k++)
{
f[i][j][0]=min(f[i][j][0],f[k][j-1][1]+f[i-k-1][j-1][1]+1);
f[i][j][1]=min(f[i][j][1],min(f[k][j-1][1]+f[i-k-1][j-1][1],
min(f[k][j][0]+f[i-k-1][j][0],f[k][j][0]+f[i-k-1][j-1][1])));
}
for (int i=0; i<=30; i++)
minans=min(min(minans,f[n][i][0]),f[n][i][1]);
printf("%d\n",minans);
memset(f,-0x3f,sizeof f);
f[1][1][0]=1;f[1][1][1]=0;f[2][1][1]=1;
for (int i=1; i<=n; i++)
for (int j=1; j<=i; j++)
if (1<<j > n<<2) break; else
for (int k=0; k<=i-2; k++)
{
f[i][j][0]=max(f[i][j][0],f[k][j-1][1]+f[i-k-1][j-1][1]+1);
f[i][j][1]=max(f[i][j][1],max(f[k][j-1][1]+f[i-k-1][j-1][1],
max(f[k][j][0]+f[i-k-1][j][0],f[k][j][0]+f[i-k-1][j-1][1])));
}
for (int i=0; i<=30; i++)
maxans=max(max(maxans,f[n][i][0]),f[n][i][1]);
printf("%d\n",maxans);
return 0;
}

BZOJ-3227 红黑树(tree) 树形DP的更多相关文章

  1. BZOJ.3227.[SDOI2008]红黑树tree(树形DP 思路)

    BZOJ orz MilkyWay天天做sxt! 首先可以树形DP:\(f[i][j][0/1]\)表示\(i\)个点的子树中,黑高度为\(j\),根节点为红/黑节点的最小红节点数(最大同理). 转移 ...

  2. BZOJ 3227: [Sdoi2008]红黑树(tree)

    BZOJ 3227: [Sdoi2008]红黑树(tree) 标签(空格分隔): OI-BZOJ OI-其它 Time Limit: 10 Sec Memory Limit: 128 MB Descr ...

  3. [BZOJ 4033] [HAOI2015] T1 【树形DP】

    题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...

  4. [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)

    [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...

  5. 熟练剖分(tree) 树形DP

    熟练剖分(tree) 树形DP 题目描述 题目传送门 分析 我们设\(f[i][j]\)为以\(i\)为根节点的子树中最坏时间复杂度小于等于\(j\)的概率 设\(g[i][j]\)为当前扫到的以\( ...

  6. [BZOJ 3227] [SDOI 2008] 红黑树(tree)

    Description 红黑树是一类特殊的二叉搜索树,其中每个结点被染成红色或黑色.若将二叉搜索树结点中的空指针看作是指向一个空结点,则称这类空结点为二叉搜索树的前端结点.并规定所有前端结点的高度为- ...

  7. Bzoj3227 [Sdoi2008]红黑树(tree)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 204  Solved: 125 Description 红黑树是一类特殊的二叉搜索树,其中每个结点被染 ...

  8. hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)

    题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: ...

  9. CF 461B Appleman and Tree 树形DP

    Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...

  10. codeforces 161D Distance in Tree 树形dp

    题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...

随机推荐

  1. 过滤掉combobox里名称相同的选项

    var pname = ""; $('#PartName').combobox({ reload: url, formatter: function (row) {//过滤comb ...

  2. poj 1163 The Triangle

    The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 43809   Accepted: 26430 De ...

  3. VS2013中BOOST库的环境配置与使用

    &1 安装Boost 文件下载:链接:http://pan.baidu.com/s/1kUKaOFP 密码:auf2 解压之后放到你想安装的文件夹内,我的是在C:\Program Files\ ...

  4. An Introduction to Interactive Programming in Python (Part 1) -- Week 2_1 练习

    # Practice Exercises for Functions # Solve each of the practice exercises below. # 1.Write a Python ...

  5. HTTP协议简介1

    概念 HTTP协议:超文本传输协议,用于服务端传输超文本到客户端的传输协议.是一个应用层协议. 工作流程 一次http请求就是一个事务.过程可分为四步: 1.客户端与服务器建立链接.页面上单击某个链接 ...

  6. Python Web实战 - 基于Flask实现的黄金点游戏

    一.简介 团队成员: 领航者:张旭 驾驶员:张国庆 项目简介: 项目名称:基于B/S模式的黄金点游戏 采用技术: 后端:Python + Sqlite3 前端:HTML + CSS + JS + Bo ...

  7. 掌握GCD以及后台永久运行的代码 (使用GCD处理后台线程和UI线程的交互)

    一个例子: 在iPhone上做一个下载网页的功能,就是:在iPhone上放一个按钮,单击按钮时,显示一个转动的圆圈,表示正在进行下载,下载完成后,将内容加载到界面上的一个文本控件上. 使用GCD前: ...

  8. Android学习第八弹之改变状态栏的颜色使其与APP风格一体化

    公众号:smart_android 作者:耿广龙|loonggg 点击"阅读原文",可查看更多内容和干货 导语:沉浸式状态栏,改变状态栏的颜色使之与APP风格一体化是不是感觉很漂亮 ...

  9. css渐变

    常这样去定义一个渐变的div: 渐变1:(双色) background: -moz-linear-gradient(top, #456d6c %, #32b66a %); %,#456d6c), co ...

  10. [codevs3223]素数密度(筛)

    题目:http://codevs.cn/problem/3223/ 分析: 可以算出来最大质因子最大不超过50000,因为如果超过50000,那么平方就超过maxlongint了.所以可以筛出5000 ...