点此看题面

大致题意: 已知主队每秒进球概率为\(p\),客队每秒进球概率为\(q\),求主队进球数大于客队的概率。

推式子

考虑枚举主队进球数\(i\),则客队进球数必然小于\(i\),因此可再枚举一个\(j\)表示客队进球数。

显然,主队进球数为\(i\)的概率应为\(p^i(1-p)^{n-i}\),同理客队进球数为\(j\)的概率应为\(q^j(1-q)^{n-j}\)。

而哪\(i\)场或哪\(j\)场进球是任意的,所以两式应各乘上一个组合数\(C_n^i\)和\(C_n^j\)。

所以就可以得到这样一个式子:

\[\sum_{i=1}^np^i(1-p)^{n-i}C_n^i\sum_{j=0}^{i-1}q^j(1-q)^{n-j}C_n^j
\]

\(O(n)\)求值

注意到\(n\le10^7\),所以我们需要一边枚举\(i\),一边同时统计这个式子的值,这其实是可以实现的。

我们用\(p_1\)存储\(p^i\),\(p_2\)存储\((1-p)^{n-i}\),\(q_1\)存储\(q^j\),\(q_2\)存储\((1-q)^{n-j}\),\(sq\)存储\(\sum_{j=0}^{i-1}q^j(1-q)^{n-j}C_n^j\),\(ans\)存储答案。

初始化\(p_1=1,p_2=(1-p)^n,q_1=\frac1q,q_2=(1-q)^{n+1},sq=ans=0\)。

然后定义两个常量\(tp\)和\(tq\)分别存储\(\frac1{1-p}\)和\(\frac1{1-q}\)。

每次操作时,将\(p_1\)乘上\(1\),\(p_2\)乘上\(tp\),\(q_1\)乘上\(q\),\(q_2\)乘上\(tq\),\(sq\)加上\(q_1q_2C_n^{i-1}\),\(ans\)加上\(p_1*p_2*C_n^i*sq\)即可。

关于内存

这道题内存其实是卡得很紧的,而\(n\le10^7\),差不多只能开一个数组。

但光组合数就需要阶乘和阶乘逆元两个数组啊!

不过,注意到此题中的组合数都是\(C(n,x)\)的格式,因此所需用到的阶乘只有\(n!\),这可以直接预处理。然后就只需要一个阶乘逆元的数组即可。

某些特判

上面的式子,在某些特殊情况下其实是过不去的。

  1. \(p=0\)时,需直接输出\(0\)。
  2. \(q=0\)时,需输出\(1-(1-p)^n\),即除非主队一球不进,否则必胜。
  3. \(p=1\)时,需输出\(1-q^n\),即除非客队全进,否则必胜。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 10000000
#define X 1000000007
#define Qinv(x) Qpow(x,X-2)
#define C(x) (1LL*Fn*Inv[x]%X*Inv[n-(x)]%X)
#define Inc(x,y) ((x+=(y))>=X&&(x-=X))
using namespace std;
int n,p,q,Fn,Inv[N+5];
I int Qpow(RI x,RI y) {RI res=1;W(y) y&1&&(res=1LL*res*x%X),x=1LL*x*x%X,y>>=1;return res;}
I int XSub(RI x,CI y) {return (x-=y)<0&&(x+=X),x;}
int main()
{
RI i,x,y,ans=0;scanf("%d%d%d",&n,&x,&y),p=1LL*x*Qinv(y)%X,scanf("%d%d",&x,&y),q=1LL*x*Qinv(y)%X;//读入数据
if(!p) return putchar('0'),0;if(!q) return printf("%d",XSub(1,Qpow(XSub(1,p),n))),0;//特判p=0或q=0的情况
if(!(p^1)) return printf("%d",XSub(1,Qpow(q,n))),0;//特判p=1的情况
for(Fn=i=1;i<=n;++i) Fn=1LL*Fn*i%X;for(Inv[n]=Qinv(Fn),i=n-1;~i;--i) Inv[i]=1LL*Inv[i+1]*(i+1)%X;//预处理n!和阶乘逆元
RI tp=Qinv(XSub(1,p)),tq=Qinv(XSub(1,q)),p1=1,p2=Qpow(XSub(1,p),n),q1=Qinv(q),q2=Qpow(XSub(1,q),n+1),sq=0;//初始化变量
for(i=1;i<=n;++i)//O(n)求值
{
p1=1LL*p1*p%X,p2=1LL*p2*tp%X,q1=1LL*q1*q%X,q2=1LL*q2*tq%X,Inc(sq,1LL*q1*q2%X*C(i-1)%X),//更新数据
Inc(ans,1LL*p1*p2%X*C(i)%X*sq%X);//更新答案
}return printf("%d",ans),0;//输出答案
}

【LOJ6513】「雅礼集训 2018 Day10」足球大战(数学题)的更多相关文章

  1. 「雅礼集训 2018 Day10」贪玩蓝月

    题目链接 题意分析 我们考虑维护两个栈 分别支持左边的插入删除以及右边的插入删除 然后对于两两个栈的我们需要用背包求出最优答案 注意 删除时如果不够的话 我们需要从另一个栈中取出一半加入另一个栈中 注 ...

  2. loj #6515. 「雅礼集训 2018 Day10」贪玩蓝月

    \(\color{#0066ff}{输入样例}\) 0 11 10 QU 0 0 QU 1 9 IG 14 7 IF 3 5 QU 0 9 IG 1 8 DF QU 0 4 IF 1 2 DG QU ...

  3. 【线段树分治 01背包】loj#6515. 「雅礼集训 2018 Day10」贪玩蓝月

    考试时候怎么就是没想到线段树分治呢? 题目描述 <贪玩蓝月>是目前最火爆的网页游戏.在游戏中每个角色都有若干装备,每件装备有一个特征值 $w$ 和一个战斗力 $v$ .在每种特定的情况下, ...

  4. Loj #6503. 「雅礼集训 2018 Day4」Magic

    Loj #6503. 「雅礼集训 2018 Day4」Magic 题目描述 前进!前进!不择手段地前进!--托马斯 · 维德 魔法纪元元年. 1453 年 5 月 3 日 16 时,高维碎片接触地球. ...

  5. 「雅礼集训 2018 Day2」农民

    传送门 Description  「搞 OI 不如种田.」 小 D 在家种了一棵二叉树,第 ii 个结点的权值为 \(a_i\). 小 D 为自己种的树买了肥料,每天给树施肥. 可是几天后,小 D 却 ...

  6. 【loj - 6516】「雅礼集训 2018 Day11」进攻!

    目录 description solution accepted code details description 你将向敌方发起进攻!敌方的防御阵地可以用一个 \(N\times M\) 的 \(0 ...

  7. LOJ #6509. 「雅礼集训 2018 Day7」C

    神仙题 LOJ #6509 题意 给定一棵树,点权为0/1,每次随机一个点(可能和之前所在点相同)走到该点并将其点权异或上1 求期望的移动距离使得所有点点权相同 题解 根本不会解方程 容易发现如果一个 ...

  8. LOJ#6503.「雅礼集训 2018 Day4」Magic[容斥+NTT+启发式合并]

    题意 \(n\) 张卡牌 \(m\) 种颜色,询问有多少种本质不同的序列满足相邻颜色相同的位置数量等于 \(k\). 分析 首先本质不同不好直接处理,可以将同种颜色的卡牌看作是不相同的,求出答案后除以 ...

  9. LOJ#6049. 「雅礼集训 2017 Day10」拍苍蝇(计算几何+bitset)

    题面 传送门 题解 首先可以用一个矩形去套这个多边形,那么我们只要枚举这个矩形的左下角就可以枚举完所有多边形的位置了 我们先对每一个\(x\)坐标开一个\(bitset\),表示这个\(x\)坐标里哪 ...

随机推荐

  1. Observable Flowable Test

    package com.test.rxjava; import java.time.Duration; import java.time.Instant; import java.util.Linke ...

  2. mybatis-Plus 增强版用法收藏

    转载:http://www.cnblogs.com/okong/p/mybatis-plus-guide-one.html#xml%E5%BD%A2%E5%BC%8F https://blog.csd ...

  3. Python中的None与 NULL(即空字符)的区别

    None是Python的特殊类型,NoneType对象,它只有一个值None. 它不支持任何运算也没有任何内建方法. None和任何其他的数据类型比较永远返回False. None有自己的数据类型No ...

  4. Error: Duplicate key name 'PCS_STATS_IDX' (state=42000,code=1061) ----Hive schematool -initSchema -dbType mysql

    schematool -initSchema -dbType mysqlMetastore connection URL: jdbc:mysql://localhost/metastore_db?cr ...

  5. my.资料收集

    1.平民打书想上个高级反击,高级反击会掉哪个呢[梦幻西游手游吧]_百度贴吧.html http://tieba.baidu.com/p/5292257591?lp=5028&mo_device ...

  6. array.map

    定义和用法 map() 方法返回一个新数组,数组中的元素为原始数组元素调用函数处理后的值. map() 方法按照原始数组元素顺序依次处理元素. 注意: map() 不会对空数组进行检测. 注意: ma ...

  7. VS 设置背景色和背景图片

    VS版本:2013 选择菜单栏上——工具——选项——环境——字体和颜色——自定义(项背景),选择好自己喜欢的颜色即可 设置背景图片 下载vs插件(ClaudiaIDE):https://visuals ...

  8. Android NDK开发 图片处理(五)

    做过Java的同学可能经常会遇到一些关于图片处理的 例如类似QQ离线头像显示灰的.最快的算法是用colorMatrix来实现.这里通过Java调用JNI来处理每一个像素来实现. 对每一个像素点取出RG ...

  9. The Falling Leaves UVA - 699

    题目链接:https://vjudge.net/problem/UVA-699 题目大意:给一颗二叉树,每个结点都有一个水平位置 :左子节点在它左边的1个单位,右子结点在它右边1个单位.从左向右输出每 ...

  10. jenkins自动打IOS包(转发)

    投稿文章,作者:一缕殇流化隐半边冰霜(@halfrost) 前言 众所周知,现在App的竞争已经到了用户体验为王,质量为上的白热化阶段.用户们都是很挑剔的.如果一个公司的推广团队好不容易砸了重金推广了 ...