Reordering the Cows

时间限制: 1 Sec  内存限制: 64 MB
提交: 18  解决: 7
[提交][状态][讨论版]

题目描述

Farmer
John's N cows (1 <= N <= 100), conveniently numbered 1..N, are
standing in a row.  Their ordering is described by an array A, where
A(i) is the number of the cow in position i.  Farmer John wants to
rearrange
them into a different ordering for a group
photo, described by an array B, where B(i) is the number of the cow
that should end up in position i.

For example, suppose the cows start out ordered as follows:
A = 5 1 4 2 3
and suppose Farmer John would like them instead to be ordered like this:
B = 2 5 3 1 4

To re-arrange themselves from the "A"
ordering to the "B" ordering, the cows perform a number of "cyclic"
shifts.  Each of these cyclic shifts begins with a cow moving to her
proper location in the "B" ordering, displacing another cow, who then
moves to her proper location, displacing another cow, and so on, until
eventually a cow ends up in the position initially occupied by the first
cow on the cycle.  For example, in the ordering above, if we start a
cycle with cow 5, then cow 5 would move to position 2, displacing cow 1,
who moves to position 4, displacing cow 2, who moves to position 1,
ending the cycle.  The cows keep performing cyclic shifts until every
cow eventually ends up in her proper location in the "B" ordering. 
Observe that each cow participates in exactly one cyclic shift, unless
she occupies the same position in the "A" and "B" orderings.

Please compute the number of different
cyclic shifts, as well as the length of the longest cyclic shift, as the
cows rearrange themselves.

输入

* Line 1: The integer N.
* Lines 2..1+N: Line i+1 contains the integer A(i).
* Lines 2+N..1+2N: Line 1+N+i contains the integer B(i).

输出

*
Line 1: Two space-separated integers, the first giving the number of
cyclic shifts and the second giving the number cows involved in the
longest such shift.  If there are no cyclic shifts,output -1 for the
second number.

样例输入

5
5
1
4
2
3
2
5
3
1
4

样例输出

2 3

提示

There are two cyclic shifts, one involving cows 5, 1, and 2, and the other involving cows 3 and 4.

【分析】这一题我想复杂了,其实循环也可以做,我使用并查集找环的。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
typedef long long ll;
using namespace std;
const int N = ;
const int M = ;
int n,m,k,l,tot=;
int a[N],b[N];
int parent[N],pre[N],vis[N];
int mark[N][N];
vector<int>vec[N],ans[N*N];
int Find(int x)
{
if(parent[x]!=x)parent[x]=Find(parent[x]);
return parent[x];
}
void Union(int x,int y)
{
x=Find(x);
y=Find(y);
if(x==y)return;
else parent[y]=x;
}
void bfs(int s,int t)
{
met(vis,);
met(pre,);
queue<int>q;
q.push(s);
vis[s]=;
while(!q.empty())
{
int u=q.front();
q.pop();
if(u==t)return;
for(int i=; i<vec[u].size(); i++)
{
int v=vec[u][i];
if(!vis[v])
{
pre[v]=u;
vis[v]=;
q.push(v);
}
}
}
}
int main()
{
int u,v;
for(int i=; i<N; i++)parent[i]=i;
scanf("%d",&n);
for(int i=; i<=n; i++)scanf("%d",&a[i]);
for(int i=; i<=n; i++)scanf("%d",&b[i]);
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
if(a[i]==b[j]&&!mark[i][j])
{
mark[i][j]=;
u=i;v=j;
int x=Find(u);
int y=Find(v);
if(x==y)
{
bfs(u,v);
ans[++tot].push_back(v);
while(pre[v])
{
ans[tot].pb(pre[v]);
v=pre[v];
}
}
else
{
vec[u].pb(v);
vec[v].pb(u);
Union(u,v);
}
break;
}
}
}
int aans=,sum=;
for(int i=; i<=tot; i++)
{
if(ans[i].size()>){
sum++;
if(ans[i].size()>aans)aans=ans[i].size();
}
}
if(sum!=)printf("%d %d\n",sum,aans);
else printf("%d -1\n",sum);
return ;
}

(寒假集训)Reordering the Cows的更多相关文章

  1. CSU-ACM寒假集训选拔-入门题

    CSU-ACM寒假集训选拔-入门题 仅选择部分有价值的题 J(2165): 时间旅行 Description 假设 Bobo 位于时间轴(数轴)上 t0 点,他要使用时间机器回到区间 (0, h] 中 ...

  2. (寒假集训)Roadblock(最短路)

    Roadblock 时间限制: 1 Sec  内存限制: 64 MB提交: 9  解决: 5[提交][状态][讨论版] 题目描述 Every morning, FJ wakes up and walk ...

  3. (寒假集训)Cow Art(bfs)

    Cow Art 时间限制: 1 Sec  内存限制: 64 MB提交: 13  解决: 10[提交][状态][讨论版] 题目描述 A little known fact about cows is t ...

  4. (寒假集训)Mooo Moo (完全背包)

    Mooo Moo 时间限制: 1 Sec  内存限制: 64 MB提交: 5  解决: 4[提交][状态][讨论版] 题目描述 Farmer John has completely forgotten ...

  5. (寒假集训) Cow Jog(二分优化的最长上升子数列)

    Cow Jog 时间限制: 1 Sec  内存限制: 64 MB提交: 24  解决: 5[提交][状态][讨论版] 题目描述 Farmer John's N cows (1 <= N < ...

  6. 中南大学2019年ACM寒假集训前期训练题集(基础题)

    先写一部分,持续到更新完. A: 寒衣调 Description 男从戎,女守家.一夜,狼烟四起,男战死沙场.从此一道黄泉,两地离别.最后,女终于在等待中老去逝去.逝去的最后是换尽一生等到的相逢和团圆 ...

  7. 2022寒假集训day2

    day1:学习seach和回溯,初步了解. day2:深度优化搜索 T1 洛谷P157:https://www.luogu.com.cn/problem/P1157 题目描述 排列与组合是常用的数学方 ...

  8. GlitchBot -HZNU寒假集训

    One of our delivery robots is malfunctioning! The job of the robot is simple; it should follow a lis ...

  9. Wooden Sticks -HZNU寒假集训

    Wooden Sticks There is a pile of n wooden sticks. The length and weight of each stick are known in a ...

随机推荐

  1. day06_08 字符串

    1.0 双引号和单引号的区别 a = "Let's go" print(a) #>>>Let's go 2.0 重复输出字符串* print('hello'*2) ...

  2. net对象的克隆

    class Person { public string name; public List<string> hobby; } void main() { Person p1 = new ...

  3. try-catch-finally容易犯的错误

    测试环境 JDK1.8 1. catch中包含return //有return的时候 输出13423 //无return的时候 输出134234 public class Trycatch { pub ...

  4. 替换Fragment 报错 The specified child already has a parent. You must call removeView() on the child's parent first.

    在将一个fragment替换到一个frameLayout的时候报错: code: transaction.replace(R.id.fragment_container, fragment2); 错误 ...

  5. CentOS 6.3下安装Vsftp,虚拟用户

    CentOS 6.3下安装Vsftp,虚拟用户一.安装:1.安装Vsftpd服务相关部件:[root@linuxidc.com ~]# yum install vsftpd*Dependencies ...

  6. JavaScript里面的面向对象

    1.JavaScript里面没有类,但是利用函数可以起到类似的作用,例如简单的构造方法,跟Python差别不大 function f1(mame,age){ this.Name = name; thi ...

  7. HDU 4667 Building Fence 计算几何 凸包+圆

    1.三角形的所有端点 2.过所有三角形的端点对所有圆做切线,得到所有切点. 3.做任意两圆的外公切线,得到所有切点. 对上述所有点求凸包,标记每个点是三角形上的点还是某个圆上的点. 求完凸包后,因为所 ...

  8. Python字符串相关

    #字符串的相关操作 #基本操作 #+ 字符串连接操作 str1 = '来是come走是go' str2 = '点头yes摇头no' result = str1 + str2 print(result) ...

  9. [luogu4242] 树上的毒瘤

    题目描述 这棵树上有n个节点,由n−1条树枝相连.初始时树上都挂了一个毒瘤,颜色为ci.接下来Salamander将会进行q个操作. Salamander有时会修改树上某个点到另外一个点的简单路径上所 ...

  10. Tomcat学习笔记(七)

    Tomcat载入器(一) 在了解tomcat的载入器时,首先需要了解的是java的类加载部分的内容. 在java体系中,系统分为3中类型的加载器 1.启动类加载器(Bootstrap ClassLoa ...