点此看题面

大致题意: 给你一棵点数为N的带权树,要你在这棵树中选择K个点染成黑色,并将其他的N-K个点染成白色。要求你求出黑点两两之间的距离加上白点两两之间距离的和的最大值。

树形\(DP\)

这道题应该是一道比较显然的树形\(DP\),我们可以用f[x][i]来表示当前节点为x时有i个黑色节点时能取得的最大值。则转移方程应为(伪代码)

f[x][i]=max(f[x][i],f[x][i-j]+f[x的一个子节点][j]+j*(m-j)*x与这个子节点之间边的边权+1LL*(Size[x的子节点]-j)*(n-m+j-Size[x的子节点])*边的边权);

既然推出了转移方程,那么这题就好做了,只要先用dfs预处理,再DP就可以了。

代码

#include<bits/stdc++.h>
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define LL long long
#define N 2000
using namespace std;
int n,m,ee=0,lnk[N+5],fa[N+5],vis[N+5],Size[N+5];
LL f[N+5][N+5];
struct edge
{
int to,nxt,val;
}e[2*N+5];
inline char tc()
{
static char ff[100000],*A=ff,*B=ff;
return A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0;int f=1;char ch;
while(!isdigit(ch=tc())) if(ch=='-') f=-1;
while(x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
x*=f;
}
inline void write(LL x)
{
if(x<0) putchar('-'),x=-x;
if(x>9) write(x/10);
putchar(x%10+'0');
}
inline void add(int x,int y,int z)
{
e[++ee]=(edge){y,lnk[x],z},lnk[x]=ee;
}
inline int dfs(int x)//dfs预处理出每个节点的父亲以及子树大小
{
register int i;
for(Size[x]=1,i=lnk[x];i;i=e[i].nxt)
if(e[i].to^fa[x]) fa[e[i].to]=x,Size[x]+=dfs(e[i].to);
return Size[x];
}
inline void dp(int x)//DP的核心内容
{
vis[x]=1;//标记已访问
register int y,i,j;
for(y=lnk[x];y;y=e[y].nxt)
{
if(vis[e[y].to]) continue;
dp(e[y].to);
for(i=min(Size[x],m);i>=0;--i)
for(j=0;j<=min(Size[e[y].to],i);++j)
f[x][i]=max(f[x][i],f[x][i-j]+f[e[y].to][j]+1LL*j*(m-j)*e[y].val+1LL*(Size[e[y].to]-j)*(n-m+j-Size[e[y].to])*e[y].val);//转移方程
}
}
int main()
{
freopen("a.in","r",stdin);
register int i;int x,y,z;
for(read(n),read(m),i=1;i<n;++i)
read(x),read(y),read(z),add(x,y,z),add(y,x,z);
dfs(1);
2*m>n?m=n-m:0;//一个非常重要的优化,没有可能会TLE,原理在于在树上将m个节点染成黑色与将n-m个节点染成黑色其实是等价的
memset(f,167,sizeof(f));
for(i=1;i<=n;++i)
f[i][0]=f[i][1]=0;
return dp(1),write(f[1][m]),0;
}

【BZOJ4033】[HAOI2015] 树上染色(树形DP)的更多相关文章

  1. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  2. bzoj4033 [HAOI2015]树上染色——树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...

  3. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  4. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  5. bzoj 4033: [HAOI2015]树上染色 [树形DP]

    4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...

  6. BZOJ 4033 [HAOI2015]树上染色 ——树形DP

    可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...

  7. BZOJ4033 HAOI2015 树上染色 【树上背包】

    BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...

  8. BZOJ4033: [HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3461  Solved: 1473[Submit][Stat ...

  9. [bzoj4033][HAOI2015]树上染色_树形dp

    树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...

  10. 【BZOJ4033】【HAOI2015】树上染色 树形DP

    题目描述 给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色.要求黑点两两之间的距离加上白点两两之间距离的和最大.问你最大的和是多少. \(n\leq 200 ...

随机推荐

  1. 反射实现增删改查(DAO层)——删除数据

    先贴出代码,后续补充自己的思路.配置文件.使用方式: /** * * 删除数据 */ @Override public void deleteObject(List<Map<String, ...

  2. ElasticSearch 学习一: 基本命令

    1. 启动时指定集群和节点的名字./elasticsearch -Ecluster.name=my_cluster_name -Enode.name=my_node_namee.g. ./elasti ...

  3. 图解linux安装hadoop

    安装步骤: 一.准备工作 1.解压文件 [root@localhost soft]# tar -zxvf hadoop-2.4.1.tar.gz 2.改名: [root@localhost soft] ...

  4. jmeter-逻辑控制器之 交替控制器(实现2个请求每次只执行其中一个)

    交替控制器: 案例:两个请求每次只能执行其中一个,可使用交替控制器. 1.线程组->添加->逻辑控制器->交替控制器 2.在控制下添加两个http请求.运行的时候第一次循环执行第一个 ...

  5. Eclipse进行Java web开发时,可能会出现这样的错误:The superclass javax.servlet.http.HttpServlet was not found on the Java Build Path

    我们遇到的错误显示如下:   我们右击有错误提示的文件夹,如下:   我们点击”配置构建路径“,如下:   我们再点击”添加库“,如下:   我们选中上图中标出的选项,再点击下一步,如下:   我们再 ...

  6. Anniversary party (树形DP)

    There is going to be a party to celebrate the 80-th Anniversary of the Ural State University. The Un ...

  7. ReflectionUtil

    import java.lang.reflect.Field; import java.lang.reflect.InvocationTargetException; import java.lang ...

  8. LeetCode 230 Kth Smallest Element in a BST 二叉搜索树中的第K个元素

    1.非递归解法 /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * ...

  9. Bazinga HDU - 5510 不可做的暴力

    http://acm.hdu.edu.cn/showproblem.php?pid=5510 想了很久队友叫我用ufs + kmp暴力过去了. fa[x] = y表示x是y的子串,所以只有fa[x] ...

  10. SpringBoot源码篇:深度分析SpringBoot如何省去web.xml

    一.前言 从本博文开始,正式开启Spring及SpringBoot源码分析之旅.这可能是一个漫长的过程,因为本人之前阅读源码都是很片面的,对Spring源码没有一个系统的认识.从本文开始我会持续更新, ...