点此看题面

大致题意: 给你一棵点数为N的带权树,要你在这棵树中选择K个点染成黑色,并将其他的N-K个点染成白色。要求你求出黑点两两之间的距离加上白点两两之间距离的和的最大值。

树形\(DP\)

这道题应该是一道比较显然的树形\(DP\),我们可以用f[x][i]来表示当前节点为x时有i个黑色节点时能取得的最大值。则转移方程应为(伪代码)

f[x][i]=max(f[x][i],f[x][i-j]+f[x的一个子节点][j]+j*(m-j)*x与这个子节点之间边的边权+1LL*(Size[x的子节点]-j)*(n-m+j-Size[x的子节点])*边的边权);

既然推出了转移方程,那么这题就好做了,只要先用dfs预处理,再DP就可以了。

代码

#include<bits/stdc++.h>
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define LL long long
#define N 2000
using namespace std;
int n,m,ee=0,lnk[N+5],fa[N+5],vis[N+5],Size[N+5];
LL f[N+5][N+5];
struct edge
{
int to,nxt,val;
}e[2*N+5];
inline char tc()
{
static char ff[100000],*A=ff,*B=ff;
return A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0;int f=1;char ch;
while(!isdigit(ch=tc())) if(ch=='-') f=-1;
while(x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
x*=f;
}
inline void write(LL x)
{
if(x<0) putchar('-'),x=-x;
if(x>9) write(x/10);
putchar(x%10+'0');
}
inline void add(int x,int y,int z)
{
e[++ee]=(edge){y,lnk[x],z},lnk[x]=ee;
}
inline int dfs(int x)//dfs预处理出每个节点的父亲以及子树大小
{
register int i;
for(Size[x]=1,i=lnk[x];i;i=e[i].nxt)
if(e[i].to^fa[x]) fa[e[i].to]=x,Size[x]+=dfs(e[i].to);
return Size[x];
}
inline void dp(int x)//DP的核心内容
{
vis[x]=1;//标记已访问
register int y,i,j;
for(y=lnk[x];y;y=e[y].nxt)
{
if(vis[e[y].to]) continue;
dp(e[y].to);
for(i=min(Size[x],m);i>=0;--i)
for(j=0;j<=min(Size[e[y].to],i);++j)
f[x][i]=max(f[x][i],f[x][i-j]+f[e[y].to][j]+1LL*j*(m-j)*e[y].val+1LL*(Size[e[y].to]-j)*(n-m+j-Size[e[y].to])*e[y].val);//转移方程
}
}
int main()
{
freopen("a.in","r",stdin);
register int i;int x,y,z;
for(read(n),read(m),i=1;i<n;++i)
read(x),read(y),read(z),add(x,y,z),add(y,x,z);
dfs(1);
2*m>n?m=n-m:0;//一个非常重要的优化,没有可能会TLE,原理在于在树上将m个节点染成黑色与将n-m个节点染成黑色其实是等价的
memset(f,167,sizeof(f));
for(i=1;i<=n;++i)
f[i][0]=f[i][1]=0;
return dp(1),write(f[1][m]),0;
}

【BZOJ4033】[HAOI2015] 树上染色(树形DP)的更多相关文章

  1. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  2. bzoj4033 [HAOI2015]树上染色——树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...

  3. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  4. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  5. bzoj 4033: [HAOI2015]树上染色 [树形DP]

    4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...

  6. BZOJ 4033 [HAOI2015]树上染色 ——树形DP

    可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...

  7. BZOJ4033 HAOI2015 树上染色 【树上背包】

    BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...

  8. BZOJ4033: [HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3461  Solved: 1473[Submit][Stat ...

  9. [bzoj4033][HAOI2015]树上染色_树形dp

    树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...

  10. 【BZOJ4033】【HAOI2015】树上染色 树形DP

    题目描述 给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色.要求黑点两两之间的距离加上白点两两之间距离的和最大.问你最大的和是多少. \(n\leq 200 ...

随机推荐

  1. python中enumerate、xrange、range

    enumerate可以给列表自动生成一列,默认从0开始,自动增长1,可以指定默认开始值 list_product = ["thinkpad","macbook" ...

  2. context.xml

    <?xml version='1.0' encoding='utf-8'?> <!-- Licensed to the Apache Software Foundation (ASF ...

  3. 大数据量高并发访问SQL优化方法

    保证在实现功能的基础上,尽量减少对数据库的访问次数:通过搜索参数,尽量减少对表的访问行数,最小化结果集,从而减轻网络负担:能够分开的操作尽量分开处理,提高每次的响应速度:在数据窗口使用SQL时,尽量把 ...

  4. $.getScript("/Scripts/js/video.min.js");

    js内引用JS: $.getScript("/Scripts/js/video.min.js");

  5. CUDA杂谈

    这一年都在编写CUDA的程序,用了很多优化的手段,发现大部分其实还是官方的指南里面的手段 https://docs.nvidia.com/cuda/cuda-c-best-practices-guid ...

  6. (转)Linux系统重要子目录及内容小结

    Linux系统重要子目录及内容小结 原文:http://blog.csdn.net/xiaolong361/article/details/52318834 1.首先来介绍下根目录下的一些重要目录含义 ...

  7. Sqoop Import数据库时中文乱码解决方案

    首先查看数据库参数编码: mysql> show variables like 'character%'; +--------------------------+--------------- ...

  8. ArrayList相关方法介绍及源码分析

    目录 ArrayList简介: ArrayList 相关方法介绍 代码表示 相关方法源码分析 ArrayList简介: java.util.ArrayList 是我们最常用的一个类,ArrayList ...

  9. settings.xml样例文件

    localRepository G:\program-my\maven-responsery true --> false --> com.your.plugins --> prox ...

  10. ThreadPoolExecutor线程池的keepAliveTime

    keepAliveTime含义 看了很多文章觉得都不能把keepAliveTime的意思说的很明白,希望通过自己的理解把keepAliveTime说的明确一些 先引用一句我觉得相对说的比较明白的含义: ...