点此看题面

大致题意: 给你一棵点数为N的带权树,要你在这棵树中选择K个点染成黑色,并将其他的N-K个点染成白色。要求你求出黑点两两之间的距离加上白点两两之间距离的和的最大值。

树形\(DP\)

这道题应该是一道比较显然的树形\(DP\),我们可以用f[x][i]来表示当前节点为x时有i个黑色节点时能取得的最大值。则转移方程应为(伪代码)

f[x][i]=max(f[x][i],f[x][i-j]+f[x的一个子节点][j]+j*(m-j)*x与这个子节点之间边的边权+1LL*(Size[x的子节点]-j)*(n-m+j-Size[x的子节点])*边的边权);

既然推出了转移方程,那么这题就好做了,只要先用dfs预处理,再DP就可以了。

代码

#include<bits/stdc++.h>
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define LL long long
#define N 2000
using namespace std;
int n,m,ee=0,lnk[N+5],fa[N+5],vis[N+5],Size[N+5];
LL f[N+5][N+5];
struct edge
{
int to,nxt,val;
}e[2*N+5];
inline char tc()
{
static char ff[100000],*A=ff,*B=ff;
return A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0;int f=1;char ch;
while(!isdigit(ch=tc())) if(ch=='-') f=-1;
while(x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
x*=f;
}
inline void write(LL x)
{
if(x<0) putchar('-'),x=-x;
if(x>9) write(x/10);
putchar(x%10+'0');
}
inline void add(int x,int y,int z)
{
e[++ee]=(edge){y,lnk[x],z},lnk[x]=ee;
}
inline int dfs(int x)//dfs预处理出每个节点的父亲以及子树大小
{
register int i;
for(Size[x]=1,i=lnk[x];i;i=e[i].nxt)
if(e[i].to^fa[x]) fa[e[i].to]=x,Size[x]+=dfs(e[i].to);
return Size[x];
}
inline void dp(int x)//DP的核心内容
{
vis[x]=1;//标记已访问
register int y,i,j;
for(y=lnk[x];y;y=e[y].nxt)
{
if(vis[e[y].to]) continue;
dp(e[y].to);
for(i=min(Size[x],m);i>=0;--i)
for(j=0;j<=min(Size[e[y].to],i);++j)
f[x][i]=max(f[x][i],f[x][i-j]+f[e[y].to][j]+1LL*j*(m-j)*e[y].val+1LL*(Size[e[y].to]-j)*(n-m+j-Size[e[y].to])*e[y].val);//转移方程
}
}
int main()
{
freopen("a.in","r",stdin);
register int i;int x,y,z;
for(read(n),read(m),i=1;i<n;++i)
read(x),read(y),read(z),add(x,y,z),add(y,x,z);
dfs(1);
2*m>n?m=n-m:0;//一个非常重要的优化,没有可能会TLE,原理在于在树上将m个节点染成黑色与将n-m个节点染成黑色其实是等价的
memset(f,167,sizeof(f));
for(i=1;i<=n;++i)
f[i][0]=f[i][1]=0;
return dp(1),write(f[1][m]),0;
}

【BZOJ4033】[HAOI2015] 树上染色(树形DP)的更多相关文章

  1. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  2. bzoj4033 [HAOI2015]树上染色——树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...

  3. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  4. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  5. bzoj 4033: [HAOI2015]树上染色 [树形DP]

    4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...

  6. BZOJ 4033 [HAOI2015]树上染色 ——树形DP

    可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...

  7. BZOJ4033 HAOI2015 树上染色 【树上背包】

    BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...

  8. BZOJ4033: [HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3461  Solved: 1473[Submit][Stat ...

  9. [bzoj4033][HAOI2015]树上染色_树形dp

    树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...

  10. 【BZOJ4033】【HAOI2015】树上染色 树形DP

    题目描述 给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色.要求黑点两两之间的距离加上白点两两之间距离的和最大.问你最大的和是多少. \(n\leq 200 ...

随机推荐

  1. 手写堆的dijkstra

    颓废.. #include <cstdio> #include <cstring> #include <algorithm> using namespace std ...

  2. bzoj2229: [Zjoi2011]最小割(最小割树)

    传送门 这题是用最小割树做的(不明白最小割树是什么的可以去看看这一题->这里) 有了最小割树就很简单了……点数那么少……每次跑出一个最大流就暴力搞一遍就好了 //minamoto #includ ...

  3. [Xcode 实际操作]五、使用表格-(2)设置UITableView单元格高度

    目录:[Swift]Xcode实际操作 本文将演示如何制作一个自定义行高的表格视图 在项目导航区,打开视图控制器的代码文件[ViewController.swift] import UIKit //首 ...

  4. PAT甲级——1097 Deduplication on a Linked List (链表)

    本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/91157982 1097 Deduplication on a L ...

  5. jmeter csv中获取带引号的数据详情(转)

    最近在工作中,对jmeter实践的点滴的记录这里分享,不一定正确,仅供参考和讨论,有想法的欢迎留言.谈论. 1技巧1:从csv中获取带引号的数据详情 背景:我们从csv中获取数据,在jmeter中使用 ...

  6. HTTP的学习记录3--HTTPS和HTTP

    一开始我所知道的只有HTTPS比HTTP更加安全,而且很多网站,如百度谷歌之流已经都是HTTPS了,博客园也是,你可以看到上方我们链接上那个绿色的小锁和绿色的安全二字. 另外吐槽一句,绿色还真是有趣, ...

  7. Apache服务器配置虚拟域名

    我在别处发的帖子 http://www.52pojie.cn/thread-599829-1-1.html

  8. HDU 5773 The All-purpose Zero 脑洞LIS

    给定一个序列,里面的0是可以任变的.问变化后最长的LIS的长度 首先,0全部选上是不亏的.这个不知道怎么说,YY一下吧. 最关键的就是解决2 0 0 3 这种问题了. 注意到这个序列的LIS应该是3 ...

  9. Git bash 生产 ssh key

    ssh-keygen -t rsa -C "youremail@example.com"

  10. json数据前台解析 修改check属性用prop()

    jQuery中的$.getJSON( )方法函数主要用来从服务器加载json编码的数据,它使用的是GET HTTP请求.使用方法如下: $.getJSON( url [, data ] [, succ ...