【BZOJ3689】异或之 堆+可持久化Trie树
【BZOJ3689】异或之
Description
给定n个非负整数A[1], A[2], ……, A[n]。
对于每对(i, j)满足1 <= i < j <= n,得到一个新的数A[i] xor A[j],这样共有n*(n-1)/2个新的数。求这些数(不包含A[i])中前k小的数。
注:xor对应于pascal中的“xor”,C++中的“^”。
Input
第一行2个正整数 n,k,如题所述。
以下n行,每行一个非负整数表示A[i]。
Output
共一行k个数,表示前k小的数。
Sample Input
1
1
3
4
Sample Output
HINT
【样例解释】
1 xor 1 = 0 (A[1] xor A[2])
1 xor 3 = 2 (A[1] xor A[3])
1 xor 4 = 5 (A[1] xor A[4])
1 xor 3 = 2 (A[2] xor A[3])
1 xor 4 = 5 (A[2] xor A[4])
3 xor 4 = 7 (A[3] xor A[4])
前5小的数:0 2 2 5 5
【数据范围】
对于100%的数据,2 <= n <= 100000; 1 <= k <= min{250000, n*(n-1)/2};
0 <= A[i] < 2^31
题解:这不就是BZOJ2006超级钢琴吗?没做过的先去做那道题。
然后这题把超级钢琴中的ST表换成可持久化Trie树就行了。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <utility>
#define mp(A,B,C,D) make_pair(make_pair(A,B),make_pair(C,D))
using namespace std;
typedef pair<int,int> pii;
priority_queue<pair<pii,pii> > pq;
const int maxn=100010;
int n,m,tot;
int ch[maxn*35][2],rt[maxn],siz[maxn*32],org[maxn*32],v[maxn];
void insert(int x,int y,int num)
{
int i,d,u;
u=rt[y]=++tot;
for(i=1<<30;i;i>>=1)
{
d=(num&i)>0;
ch[u][d]=++tot,ch[u][d^1]=ch[x][d^1],u=ch[u][d],x=ch[x][d],siz[u]=siz[x]+1;
}
org[u]=y;
}
int query(int x,int y,int num)
{
int ret=0,i,d;
for(i=1<<30;i;i>>=1)
{
d=(num&i)>0;
if(siz[ch[y][d]]==siz[ch[x][d]]) d^=1;
x=ch[x][d],y=ch[y][d];
}
return org[y];
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd(),m=rd();
int i,a,b,c,x,y;
for(i=1;i<=n;i++) v[i]=rd(),insert(rt[i-1],i,v[i]);
for(i=2;i<=n;i++) pq.push(mp(-(v[i]^v[query(0,rt[i-1],v[i])]),i,1,i-1));
pii t1,t2;
for(i=1;i<=m;i++)
{
if(i!=1) printf(" ");
t1=pq.top().first,t2=pq.top().second,pq.pop();
printf("%d",-t1.first),x=t1.second,a=t2.first,b=t2.second;
y=query(rt[a-1],rt[b],v[x]);
if(y>a) pq.push(mp(-(v[x]^v[query(rt[a-1],rt[y-1],v[x])]),x,a,y-1));
if(y<b) pq.push(mp(-(v[x]^v[query(rt[y],rt[b],v[x])]),x,y+1,b));
}
return 0;
}
【BZOJ3689】异或之 堆+可持久化Trie树的更多相关文章
- 【洛谷5283】[十二省联考2019] 异或粽子(可持久化Trie树+堆)
点此看题面 大致题意: 求前\(k\)大的区间异或和之和. 可持久化\(Trie\)树 之前做过一些可持久化\(Trie\)树题,结果说到底还是主席树. 终于,碰到一道真·可持久化\(Trie\)树的 ...
- bzoj 3261: 最大异或和 (可持久化trie树)
3261: 最大异或和 Time Limit: 10 Sec Memory Limit: 512 MB Description 给定一个非负整数序列 {a},初始长度为 N. ...
- BZOJ4103 [Thu Summer Camp 2015]异或运算 【可持久化trie树】
题目链接 BZOJ4103 题解 一眼看过去是二维结构,实则未然需要树套树之类的数据结构 区域异或和,就一定是可持久化\(trie\)树 观察数据,\(m\)非常大,而\(n\)和\(p\)比较小,甚 ...
- 【bzoj3261】【最大异或和】可持久化trie树+贪心
[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=61705397 Description 给定一个非 ...
- BZOJ3261 最大异或和 【可持久化trie树】
题目 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要找到一个位置p,满 ...
- bzoj3261: 最大异或和 (可持久化trie树)
题目链接 题解 看到异或和最大就应该想到01 trie树 我们记\(S_i\)为前i项的异或和 那么我们的目的是最大化\(S_n\)^\(x\)^\(S_{j-1}\) \((l <= j &l ...
- 『异或粽子 堆 可持久化trie』
异或粽子 Description 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 n 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 1 到 n.第 i 种馅儿 ...
- 【bzoj3689】异或之 可持久化Trie树+堆
题目描述 给定n个非负整数A[1], A[2], ……, A[n].对于每对(i, j)满足1 <= i < j <= n,得到一个新的数A[i] xor A[j],这样共有n*(n ...
- BZOJ_3689_异或之_可持久化Trie+堆
BZOJ_3689_异或之_可持久化Trie+堆 Description 给定n个非负整数A[1], A[2], ……, A[n]. 对于每对(i, j)满足1 <= i < j < ...
随机推荐
- linux 远程同步数据工具rsync (1)
rsync 远程同步数据工具,是linux下的数据备份工具rsync(remote sync 远程同步) 特点:在本地同步数据(类似于cp,但是有不同于远程scp),它会先判断已经存在的数据和远程数据 ...
- awk使用记录
awk是一个强大的文本分析工具,相对于grep的查找,sed的编辑,awk在其对数据分析并生成报告时,显得尤为强大.简单来说awk就是把文件逐行的读入,以空格为默认分隔符将每行切片,切开的部分再进行各 ...
- 转 : SQL Server数据库优化经验总结
优化数据库的注意事项: 1.关键字段建立索引. 2.使用存储过程,它使SQL变得更加灵活和高效. 3.备份数据库和清除垃圾数据. 4.SQL语句语法的优化.(可以用Sybase的SQL Expert, ...
- const 使用方法具体解释
const使用方法具体解释 面向对象是C++的重要特性. 可是c++在c的基础上新添加的几点优化也是非常耀眼的 就const直接能够代替c中的#define 下面几点非常重要,学不好后果也也非常严重 ...
- UVA10312- Expression Bracketing(Catalan + 递推)
option=com_onlinejudge&Itemid=8&page=show_problem&problem=1253">题目链接 题意:给出一个序列,长 ...
- 升级滑动销毁activity,随着手势的滑动而滑动的效果
文章开头先注明本滑动销毁是对 http://blog.csdn.net/xiaanming/article/details/20934541 这篇博客的内容进行一个小小的改动 添加向左滑动打开另外一个 ...
- Maven 缺省内置变量
1.${project.build.directory} 构建目录,缺省为target 2.${project.build.outputDirectory} 构建过程输出目录,缺省为target/cl ...
- Android布局中 android:layout_gravity="bottom"为何不起作用?
在android布局时我们有时会需要将位于LinearLayout布局中的控件放在布局底部,或者是同时想将几个控件底部对齐,此时我们自然会想到使用 android:layout_gravity=&qu ...
- Hadoop 配置及hadoop HA 的配置
注:本文中提到的ochadoop 不要感到奇怪,是亚信公司内部自己合成的一个包.把全部的组件都放在一个包内了.免去了组件的下载过程和解决兼容问题.事实上也能够自己下载的.不要受到影响. 另,转载请注明 ...
- memcache原理和实际应用
Memcache是什么 Memcache是danga.com的一个项目,最早是为 LiveJournal 服务的.眼下全世界不少人使用这个缓存项目来构建自己大负载的站点,来分担数据库的压力. 它能够应 ...