洛谷P3803 【模板】多项式乘法(FFT)
P3803 【模板】多项式乘法(FFT)
题目背景
这是一道FFT模板题
题目描述
给定一个n次多项式F(x),和一个m次多项式G(x)。
请求出F(x)和G(x)的卷积。
输入输出格式
输入格式:
第一行2个正整数n,m。
接下来一行n+1个数字,从低到高表示F(x)的系数。
接下来一行m+1个数字,从低到高表示G(x))的系数。
输出格式:
一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数。
输入输出样例
说明
保证输入中的系数大于等于 0 且小于等于9。
对于100%的数据: n, m \leq {10}^6n,m≤106, 共计20个数据点,2s。
数据有一定梯度。
空间限制:256MB
/*fft模板*/
#include<iostream>
#include<cstdio>
#include<cmath>
#define maxn 4000010
#define PI (acos(-1.0))
using namespace std;
int rd[maxn];
struct node{
double x,y;
node (double a=,double b=):x(a),y(b){}
node operator + (const node &p)
{return node (x+p.x,y+p.y);}
node operator - (const node &p)
{return node (x-p.x,y-p.y);}
node operator * (const node &p)
{return node (x*p.x-y*p.y,x*p.y+y*p.x);}
node operator / (const double &p)
{return node (x/p,y/p);}
}a[maxn],b[maxn];
void fft(node *a,int N,int f){
node wn,w,x,y;int i;
for(i=;i<N;i++)
if(rd[i]>i)swap(a[i],a[rd[i]]);
for(int k=;k<N;k<<=){
wn=node(cos(PI/k),f*sin(PI/k));
for(int j=;j<N;j+=k<<)
for(w=node(,),i=;i<k;i++,w=w*wn){
x=a[i+j];
y=a[i+j+k]*w;
a[i+j]=x+y;
a[i+j+k]=x-y;
}
}
if(f==-)for(int i=;i<N;i++)a[i]=a[i]/N;
}
int main(){
freopen("Cola.txt","r",stdin);
int N,M;
scanf("%d%d",&N,&M);
for(int i=;i<=N;i++)scanf("%lf",&a[i].x);
for(int i=;i<=M;i++)scanf("%lf",&b[i].x);
M=N+M;N=;int l=;
while(N<=M)N<<=,l++;
for(int i=;i<N;i++)rd[i]=(rd[i>>]>>)|((i&)<<(l-));//进行反转
fft(a,N,),fft(b,N,);
for(int i=;i<N;i++)a[i]=a[i]*b[i];
fft(a,N,-);
for(int i=;i<=M;i++)
printf("%d ",int(a[i].x+0.5));
return ;
}
洛谷P3803 【模板】多项式乘法(FFT)的更多相关文章
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- P3803 [模板] 多项式乘法 (FFT)
Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...
- 洛谷.4512.[模板]多项式除法(NTT)
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...
- 洛谷.4238.[模板]多项式求逆(NTT)
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...
- 洛谷 P4512 [模板] 多项式除法
题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...
- 洛谷 P4238 [模板] 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- 洛谷p3803 FFT入门
洛谷p3803 FFT入门 ps:花了我一天的时间弄懂fft的原理,感觉fft的折半很神奇! 大致谈一谈FFT的基本原理: 对于两个多项式的卷积,可以O(n^2)求出来(妥妥的暴力) 显然一个多项式可 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
随机推荐
- NFL原则告诉我们做决策的时候,试图找到一个能解决所有问题,“大而全”的方案是不存在的。我们应当找到最关心的问题,因地制宜做出选择。——聚焦目标,取舍有道!
资源匮乏原则:有限的资源无法满足无穷的需要及欲望:因此想要多一点的某件东西,意味着必须放弃一些其他的东西:因为资源匮乏,所以我们必须做出选择. NFL原则:没有免费午餐定理(No Free Lunch ...
- appium-环境搭建(二)
接着上一篇 1.基本的python环境 2.安装node.js,32位还是64位根据自己的系统来选择 3.安装.net framwork4.5 4.安装appium 安装完成后,运行appium.ex ...
- 2016北京集训 小Q与进位制
题目大意 一个数每一位进制不同,已知每一位的进制,求该数的十进制表达. 显然有 $$Ans=\sum\limits_{i=0}^{n-1}a_i \prod\limits_{j=0}^{i-1}bas ...
- 【Google】非下降数组
转自九章算法公众号 题目描述 给出包含n个整数的数组,你的任务是检查它是否可以通过修改至多一个元素变成非下降的.一个非下降的数组array对于所有的i(1<=i<n)满足array[i-1 ...
- 关于VGG网络的介绍
本博客参考作者链接:https://zhuanlan.zhihu.com/p/41423739 前言: VGG是Oxford的Visual Geometry Group的组提出的(大家应该能看出VGG ...
- 手动导入XMPPFramework框架
环境: Xcode 8.2.1 XMPPFramework 3.6.5 (下载地址) Objective-C (项目使用的语言,最新版的3.7.0要求convert to swift) 1.下载XMP ...
- 桥接以及Mercury MW54R中继
家里连个路由器,一个是比较先进的TP-Link的TL-WR842N(100M),另外一个是比较古老的水星(Mercury) MW54R(54M),我们知道新的路由器都有WDS功能,方便作为副路由器(中 ...
- POJ1379:Run Away
我对模拟退火的理解:https://www.cnblogs.com/AKMer/p/9580982.html 我对爬山的理解:https://www.cnblogs.com/AKMer/p/95552 ...
- 【转】 Pro Android学习笔记(三一):Menu(2):扩展、图片、子菜单
目录(?)[-] 菜单扩展 菜单项加入图片 子菜单 菜单扩展 如果菜单项很多,超过六个时,就会采用菜单扩展模式.在例子中我加入了10个菜单项,预计能进入菜单扩展模式,但是实际效果如右图所示.效果和li ...
- 【转】Pro Android学习笔记(八):了解Content Provider(下中)
在之前提供了小例子BookProvider,我们回过头看看如何将通过该Content Provider进行数据的读取. (1)增加 private void addBook(String name , ...