Circle Through Three Points
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 3766   Accepted: 1570

Description

Your team is to write a program that, given the Cartesian coordinates of three points on a plane, will find the equation of the circle through them all. The three points will not be on a straight line.
The solution is to be printed as an equation of the form

	(x - h)^2 + (y - k)^2 = r^2				(1)

and an equation of the form

	x^2 + y^2 + cx + dy - e = 0				(2)

Input

Each line of input to your program will contain the x and y coordinates of three points, in the order Ax, Ay, Bx, By, Cx, Cy. These coordinates will be real numbers separated from each other by one or more spaces.

Output

Your program must print the required equations on two lines using the format given in the sample below. Your computed values for h, k, r, c, d, and e in Equations 1 and 2 above are to be printed with three digits after the decimal point. Plus and minus signs in the equations should be changed as needed to avoid multiple signs before a number. Plus, minus, and equal signs must be separated from the adjacent characters by a single space on each side. No other spaces are to appear in the equations. Print a single blank line after each equation pair.

Sample Input

7.0 -5.0 -1.0 1.0 0.0 -6.0
1.0 7.0 8.0 6.0 7.0 -2.0

Sample Output

(x - 3.000)^2 + (y + 2.000)^2 = 5.000^2
x^2 + y^2 - 6.000x + 4.000y - 12.000 = 0 (x - 3.921)^2 + (y - 2.447)^2 = 5.409^2
x^2 + y^2 - 7.842x - 4.895y - 7.895 = 0

Source

恶心的输出..看了discuss才知道0.000要原样输出。。

#include<stdio.h>
#include<iostream>
#include<string.h>
#include <stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;
const double pi = 3.141592653589793;
const double eps = 1e-;
struct Point
{
double x,y;
} p[];
double dis(Point a,Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
///外接圆圆心坐标
Point waixin(Point a,Point b,Point c)
{
Point p;
double a1 = b.x - a.x, b1 = b.y - a.y, c1 = (a1*a1 + b1*b1)/;
double a2 = c.x - a.x, b2 = c.y - a.y, c2 = (a2*a2 + b2*b2)/;
double d = a1*b2 - a2*b1;
p.x = a.x + (c1*b2 - c2*b1)/d, p.y=a.y + (a1*c2 -a2*c1)/d;
return p;
}
char check(double x)
{
if(x<-eps) return '+';
return '-';
}
char check2(double x)
{
if(x<-eps) return '-';
return '+';
}
int main()
{ while(scanf("%lf%lf%lf%lf%lf%lf",&p[].x,&p[].y,&p[].x,&p[].y,&p[].x,&p[].y)!=EOF)
{
double a = dis(p[],p[]);
double b = dis(p[],p[]);
double c = dis(p[],p[]);
double r = a*b*c/sqrt((a+b+c)*(-a+b+c)*(a-b+c)*(a+b-c));
Point center;
center = waixin(p[],p[],p[]);
if(fabs(center.x)<eps) printf("x^2 + ");
else printf("(x %c %.3lf)^2 + ",check(center.x),fabs(center.x));
if(fabs(center.y)<eps) printf("y^2");
else printf("(y %c %.3lf)^2",check(center.y),fabs(center.y));
printf(" = %.3lf^2\n",r); printf("x^2 + y^2");
double c1 = *center.x,d1=*center.y;
double r1 = center.x*center.x+center.y*center.y-r*r;
printf(" %c %.3lfx %c %.3lfy %c %.3lf = 0\n\n",check(c1),fabs(c1),check(d1),fabs(d1),check2(r1),fabs(r1));
}
return ;
}

poj 1329(已知三点求外接圆方程.)的更多相关文章

  1. poj 2242(已知三点求外接圆周长)

    The Circumference of the Circle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8310   ...

  2. 2020牛客暑期多校训练营 第二场 B Boundary 计算几何 圆 已知三点求圆心

    LINK:Boundary 计算几何确实是弱项 因为好多东西都不太会求 没有到很精通的地步. 做法很多,先说官方题解 其实就是枚举一个点 P 然后可以发现 再枚举一个点 然后再判断有多少个点在圆上显然 ...

  3. 【NX二次开发】三点画圆,三角形外心,已知三点求圆心

    已知P1.P2.P3,求点O 算法:三点不在一条直线上时,通过连接任意两点,作中垂线.任意两条中垂线的交点是圆心.

  4. poj 2002(好题 链式hash+已知正方形两点求另外两点)

    Squares Time Limit: 3500MS   Memory Limit: 65536K Total Submissions: 18493   Accepted: 7124 Descript ...

  5. Luogu-P1027 Car的旅行路线 已知三点确定矩形 + 最短路

    传送门:https://www.luogu.org/problemnew/show/P1027 题意: 图中有n个城市,每个城市有4个机场在矩形的四个顶点上.一个城市间的机场可以通过高铁通达,不同城市 ...

  6. [YY]已知逆序列求原序列(二分,树状数组)

    在看组合数学,看到逆序列这个概念.于是YY了一道题:已知逆序列,求出原序列. 例子: 元素个数 n = 8 逆序列 a={5,3,4,0,2,1,1,0} 则有原序列 p={4,8,6,2,5,1,3 ...

  7. 已知段地址,求CPU寻址范围

    已知段地址为0001H,仅通过变化偏移地址寻址,则CPU的寻址范围是? 物理地址 = 段地址×16 + 偏移地址 所以物理地址的范围是[16×1H+0H, 16×1H+FFFFH] 也就是[10H×1 ...

  8. poj 1329 Circle Through Three Points(求圆心+输出)

    题目链接:http://poj.org/problem?id=1329 输出很蛋疼,要考虑系数为0,输出也不同 #include<cstdio> #include<cstring&g ...

  9. POJ 2208 已知边四面体六个长度,计算体积

    Pyramids Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2718   Accepted: 886   Special ...

随机推荐

  1. 使用Oracle绿色客户端(InstantClient)连接远程Oracle的配置方法

    非常简单的配置,网上一搜,有很多,但是还是想记录下来,说不定以后需要了,直接进自己的博客看看也好啊. 下载了PLSQL Developer 11,安装好了发现不能连接远程数据库,但是又不想安装orac ...

  2. laravel5.5配置信息

    目录 1 环境配置 1.1 检索环境配置 1.2 确定当前环境 2 访问配置值 3 配置缓存 4 维护模式 配置文件在config目录下,为了便于不同人员的开发,我们可以使用不同的.env文件来配置各 ...

  3. 剑指Offer - 九度1506 - 求1+2+3+...+n

    剑指Offer - 九度1506 - 求1+2+3+...+n2013-11-29 19:22 题目描述: 求1+2+3+...+n,要求不能使用乘除法.for.while.if.else.switc ...

  4. 《Cracking the Coding Interview》——第2章:链表——题目7

    2014-03-18 02:57 题目:检查链表是否是回文的,即是否中心对称. 解法:我的做法是将链表从中间对半拆成两条,然后把后半条反转,再与前半条对比.对比完了再将后半条反转了拼回去.这样不涉及额 ...

  5. 《算法》C++代码 前言

    现在大二正在上<数据结构>课,课内的书上代码实现很喜欢无脑用类.变量名字很长,而且常常实现太繁琐,并且代码有些无法运行,这些对于老手无所谓,但初学者看起来却会很不舒服.因此写点自己的代码, ...

  6. 七夕蠕虫“XX神器”逆向分析

    转载请注明出处 ____________________________________________________________________________________________ ...

  7. Percona-Tookit工具包之pt-table-usage

      Preface       There always be some table join operations in our SQL statement.Although we can know ...

  8. Python利器一之requests

    Python利器一之requests 一.教程涉及开发语言.脚本.框架.数据库等内容 Python + requests 通过 pip 安装: pip install requests 通过 easy ...

  9. time模块与random模块,六位含字母随机验证码

    # time模块# import time# time.time()#计算这一时刻时间戳 *******# time.sleep(1)#让cpu休眠一定时间 *******# time.clock() ...

  10. C#读取xml文件写入到TreeView中

    开发过程中我们会遇到一些读取xml文件的时候,下面是我学习的整理. 用XmlDocument读取加载 XmlDocument doc = new XmlDocument(); doc.Load(&qu ...