BZOJ2216: [Poi2011]Lightning Conductor(DP 决策单调性)
题意
题目链接
Sol
很nice的决策单调性题目
首先把给出的式子移项,我们要求的$P_i = max(a_j + \sqrt{|i - j|}) - a_i$。
按套路把绝对值拆掉,$p_i = max(max_{j = 1}^i (a_j = \sqrt{i - j}), max_{j = i + 1}^n (a_j + \sqrt{j - i})) - a_i$
对于后面的一段,我们把序列翻转之后和前一段是等价的。
也就是说,我们现在只需要找到$P_i = max_{j = 1}^i (a_j + \sqrt{i - j})$
考虑到式子中只有一个max函数,那这玩意儿应该是有决策单调性的
直接设$f_j = a_j + \sqrt{i - j}, i \geqslant j$,其中$i$是自变量
观察这个函数,应该是一个在$[j, INF]$内有定义,过点$(j, a[j])$的函数,且增速与函数$g_i = \sqrt{i}$相同
我们需要做的,就是对每个$i$,找到最大的$f_j$
考虑到$g_i$增长速度会越来越慢,所以一个函数增长到一定程度后可能会被另一个函数取代
直接用单调队列维护,设$K_{i, j}$表示$f_i, f_j$的交点,$h, t$分别表示队首/尾,
当新加入一个元素$i$的时候,显然,若$K_{t -1, t} > K_{t - 1, i}$,那么$t$这个函数是没用的、
当$K_{h, h+1} < i$的时候,弹出队首
就是最后输出答案的时候有点“卡精度”,真恶心
经验:
以后看到$f_i = max(f_j) + g$的式子一定要往单调性上想,如果单调性不是很显然的话可以用换元法设函数找单调性
另外绝对值拆开算一般会好算一些
#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
using namespace std;
const int MAXN = 1e6 + , INF = 1e9 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, a[MAXN], q[MAXN], Cro[MAXN];
double P[MAXN], sqr[MAXN];
double calc(int j, int i) {
return a[j] + sqr[i - j];
}
int K(int x, int y) {
int l = max(x, y), r = N, ans = N + ;
while(l <= r) {
int mid = l + r >> ;
if(calc(x, mid) >= calc(y, mid)) l = mid + ;
else r = mid - , ans = mid;
}
return ans;
}
void solve() {
int h = , t = ;
for(int i = ; i <= N; i++) {
while(h < t && K(q[t - ], q[t]) >= K(q[t], i)) t--;
q[++t] = i;
while(h < t && K(q[h], q[h + ]) <= i) h++;
P[i] = max(P[i], calc(q[h], i));
}
}
main() {
N = read();
for(int i = ; i <= N; i++) a[i] = read(), sqr[i] = sqrt(i);
solve();
reverse(a + , a + N + );
reverse(P + , P + N + );
solve();
for(int i = N; i >= ; i--)
printf("%d\n", max(, (int)ceil(P[i]) - a[i]));
return ;
}
BZOJ2216: [Poi2011]Lightning Conductor(DP 决策单调性)的更多相关文章
- BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】
题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...
- BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】
Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...
- P3515 [POI2011]Lightning Conductor(决策单调性分治)
P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...
- 洛谷P3515 [POI2011]Lightning Conductor(决策单调性)
题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) ...
- 【洛谷3515】[POI2011] Lightning Conductor(决策单调性)
点此看题面 大致题意: 给你一个序列,对于每个\(i\)求最小的自然数\(p\)使得对于任意\(j\)满足\(a_j\le a_i+p-\sqrt{|i-j|}\). 证明单调性 考虑到\(\sqrt ...
- bzoj 2216: [Poi2011]Lightning Conductor【决策单调性dp+分治】
参考:https://blog.csdn.net/clove_unique/article/details/57405845 死活不过样例看了题解才发现要用double.... \[ a_j \leq ...
- bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)
每个pi要求 这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化 #include<iostream> #include<cstring> #incl ...
- [POI2011]Lightening Conductor(决策单调性)
好久没写过决策单调性了. 这题其实就是 $p_i=\lceil\max\limits_{j}(a_j-a_i+\sqrt{|i-j|})\rceil$. 拆成两边,先只考虑 $j<i$,然后反过 ...
- BZOJ2216 : [Poi2011]Lightning Conductor
$f[i]=\max(a[j]+\lceil\sqrt{|i-j|}\rceil)$, 拆开绝对值,考虑j<i,则决策具有单调性,j>i同理, 所以可以用分治$O(n\log n)$解决. ...
随机推荐
- 项目一:第四天 1、快递员的条件分页查询-noSession,条件查询 2、快递员删除(逻辑删除) 3、基于Apache POI实现批量导入区域数据 a)Jquery OCUpload上传文件插件使用 b)Apache POI读取excel文件数据
1. 快递员的条件分页查询-noSession,条件查询 2. 快递员删除(逻辑删除) 3. 基于Apache POI实现批量导入区域数据 a) Jquery OCUpload上传文件插件使用 b) ...
- Hive Joins 用法与操作
Hive表连接的语法支持如下: join_table: table_reference JOIN table_factor [join_condition] | table_reference {LE ...
- sklearn保存模型
# View more python tutorials on my Youtube and Youku channel!!! # Youtube video tutorial: https://ww ...
- windows 下隐藏 system 函数弹窗
概述 下面的程序是解决windows 下面调用 system() 函数的时候,会有窗口弹出的问题 头文件 #include <windows.h> 源码 /** * @brief 普通字符 ...
- hdu1054
/* [题意] 给定一棵树,标记一节点,则与该节点所连的边都被标记,问最少需要标记多少个节点使得所有边都被标记: 或者说给定一个树型城堡,在交叉路口放一个士兵,则与该路口相连的路都被守住, 问最少需要 ...
- Object—C 块在函数中作为参数时的分析
暂时对这个有了一些粗浅的理解,记下来一边后面学习时学习,改正. 先举个例子: A类: .h文件: @interface A : NSObject - (void)Paly1:(void (^)(do ...
- uWSGI + Nginx + Django 部署
1. uWSGI 服务器 Django 默认使用 WSGI(Python Web Server Gateway ) 作为 Web 服务器,一般仅用来作为测试使用,实际生产环境而是使用 uWSGI 和 ...
- Educational Codeforces Round 57D(DP,思维)
#include<bits/stdc++.h>using namespace std;char s[100007];long long a[100007];long long dp[100 ...
- hortonworks docker 安装
1. 下载并解压安装脚本: Hortonworks Data Platform (HDP) for Docker 2. 进入到解压后的目录,运行下面的命令,{HDPversion} 需要替换成相应目 ...
- [Xcode 实际操作]三、视图控制器-(9)在Storyboard中使用标签和按钮控件
目录:[Swift]Xcode实际操作 本文将演示标签和按钮在故事板中的应用. 在欢迎串口中,点击创建一个新的项目[Create a new Xcode project] [Single View A ...