EM算法

Jensen不等式

其实Jensen不等式正是我们熟知的convex函数和concave函数性质,对于convex函数,有
\[
\lambda f(x) + (1-\lambda)f(y)\ge f(\lambda x + (1-\lambda)f(y)),\ where\ 0\le\lambda\le 1
\]
推广一下,便有
\[
f(\sum_{i=1}^n\lambda_ix_i)\le\sum_{i=1}^n\lambda_if(x_i),\ where \sum_{i=1}^n\lambda_i = 1
\]
这就是Jensen不等式,写成期望的形式便有
\[
f(E(x))\le E(f(x))
\]
对于concave函数,只需不等号反向,因为对convex函数取负得到的是concave函。

EM算法推导

我们的目的是最大化似然函数\(P(X|\theta)\),为了计算方便,取对数,得到
\[
L(\theta)=\ln P(X|\theta)
\]
假设我们已知\(\theta^n\),现在要求新的\(\theta\),为了极大化似然函数,我们期望最大化
\[
\max(L(\theta)-L(\theta'))
\]
于是有
\[
\begin{align*}
L(\theta) - L(\theta') &= \log\left(\sum_ZP(Y|Z,\theta)P(Z|\theta)\right) - \log P(Y|\theta')\\
&= \log\left(\sum_ZP(Z|Y,\theta')\dfrac{P(Y|Z,\theta)P(Z|\theta)}{P(Z|Y,\theta')}\right) - \log P(Y|\theta')\\
&\ge \sum_ZP(Z|Y,\theta')\log\dfrac{P(Y|Z,\theta)P(Z|\theta)}{P(Z|Y,\theta')} - \log P(Y|\theta')\\
&= \sum_ZP(Z|Y,\theta')\log\dfrac{P(Y|Z,\theta)P(Z|\theta)}{P(Z|Y,\theta')} - \log P(Y|\theta')\sum_ZP(Z|Y,\theta')\\
&= \sum_ZP(Z|Y,\theta')\log P(Y|Z,\theta)P(Z|\theta) - \log P(Y|\theta') - \sum_ZP(Z|Y,\theta')\log P(Z|Y,\theta')
\end{align*}
\]
后面两项是常数项,去掉还是等价的。于是便有
\[\begin{align*}
\arg\max_\theta L(\theta) - L(\theta') &= \arg\max_\theta\sum_ZP(Z|Y,\theta')\log P(Y|Z,\theta)P(Z|\theta) \\
&- \log P(Y|\theta') - \sum_ZP(Z|Y,\theta')\log P(Z|Y,\theta')\\
&= \arg\max_\theta\sum_ZP(Z|Y,\theta')\log P(Y|Z,\theta)P(Z|\theta)\\
&= \arg\max_\theta \sum_ZP(Z|Y,\theta')\log P(Y,Z|\theta)
\end{align*}\]

上面这种形式是采用李航的《统计学习方法》中的形式,与PRML中的形式初看有些不一样,我们只需要把最初的\(P(Y|Z,\theta)P(Z|\theta)\)替换为\(P(Y,Z|\theta)\)就一样了。

EM算法以及推导的更多相关文章

  1. EM算法简易推导

    EM算法推导 网上和书上有关于EM算法的推导,都比较复杂,不便于记忆,这里给出一个更加简短的推导,用于备忘. 在不包含隐变量的情况下,我们求最大似然的时候只需要进行求导使导函数等于0,求出参数即可.但 ...

  2. 【机器学习】EM算法详细推导和讲解

    今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教. 众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的 ...

  3. EM算法-完整推导

    前篇已经对EM过程,举了扔硬币和高斯分布等案例来直观认识了, 目标是参数估计, 分为 E-step 和 M-step, 不断循环, 直到收敛则求出了近似的估计参数, 不多说了, 本篇不说栗子, 直接来 ...

  4. Machine Learning系列--EM算法理解与推导

    EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算 ...

  5. EM算法理论与推导

    EM算法(Expectation-maximization),又称最大期望算法,是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计(或极大后验概率估计) 从定义可知,该算法是用来估计参数的,这 ...

  6. EM算法

    EM算法的推导

  7. 猪猪的机器学习笔记(十四)EM算法

    EM算法 作者:樱花猪   摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大 ...

  8. EM算法原理总结

    EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断等等.本文就对 ...

  9. NLP —— 图模型(零):EM算法简述及简单示例(三硬币模型)

    最近接触了pLSA模型,该模型需要使用期望最大化(Expectation Maximization)算法求解. 本文简述了以下内容: 为什么需要EM算法 EM算法的推导与流程 EM算法的收敛性定理 使 ...

随机推荐

  1. 泛型学习第一天:List与IList的区别 (三)

    已经有很多人讨论过IList和List的区别,恩,我也赞同其中的一些观点,其实他们二者也是有优有劣的,看你着重用在哪个方面,先贴一下我赞同的意见,基本上也都是网友们总结的. 首先IList 泛型接口是 ...

  2. Qt之密码框不可全选、复制、粘贴无右键菜单等

    转载---> http://blog.sina.com.cn/s/blog_a6fb6cc90101artk.html 在做用户登录界面的时候,往往会用到密码框,则其中的一些功能也要求与普通的输 ...

  3. Nova中的系统状态分析

    系统状态 作者 孔令贤 Nova提供这么几个资源状态的查询. Service Nova中的service有两类,一类是所谓的control service,一类就是compute service.要想 ...

  4. utf-8编码汉字转换成对于的16进制 10进制对于的值

    http://www.mytju.com/classcode/tools/encode_utf8.asp

  5. url字符串中含中文的转码方法

    凡是用get方法的,url里含中文的,都需要调用上面的函数进行编码.要不然会被当成二进制截断. //URL编码 +(NSString*)urlEncode:(NSString *)str { int  ...

  6. python中读写LMDB数据库

    LMDB的全称是Lightning Memory-Mapped Database(快如闪电的内存映射数据库),它的文件结构简单,包含一个数据文件和一个锁文件: LMDB文件可以同时由多个进程打开,具有 ...

  7. PHP JSON文件解析并获取key、value,判断key是否存在

    /****************************************************************************** * PHP JSON文件解析并获取key ...

  8. WordPress发布文章前强制要求上传特色图像

    如果你的网站需要给每篇文章设置特色图像才能达到理想的显示效果,而且允许其他用户在后台发布文章的,那么您可能需要强制要求他们给文章上传特色图像,否者就无法发布.Require Featured Imag ...

  9. CF Round 542 Div1.

    B. Wrong Answer 构造一个长度为 2000 的数组,满足最大“子段和 $\times$ 子段长度”比最大子段和刚好大 k sol: 一个比较好的构造方法: 令数组总和为 $S$,然后构造 ...

  10. String format方法的应用

    String str=null; str=String.format("Hi,%s", "小超"); System.out.println(str); str= ...