EM算法以及推导
EM算法
Jensen不等式
其实Jensen不等式正是我们熟知的convex函数和concave函数性质,对于convex函数,有
\[
\lambda f(x) + (1-\lambda)f(y)\ge f(\lambda x + (1-\lambda)f(y)),\ where\ 0\le\lambda\le 1
\]
推广一下,便有
\[
f(\sum_{i=1}^n\lambda_ix_i)\le\sum_{i=1}^n\lambda_if(x_i),\ where \sum_{i=1}^n\lambda_i = 1
\]
这就是Jensen不等式,写成期望的形式便有
\[
f(E(x))\le E(f(x))
\]
对于concave函数,只需不等号反向,因为对convex函数取负得到的是concave函。
EM算法推导
我们的目的是最大化似然函数\(P(X|\theta)\),为了计算方便,取对数,得到
\[
L(\theta)=\ln P(X|\theta)
\]
假设我们已知\(\theta^n\),现在要求新的\(\theta\),为了极大化似然函数,我们期望最大化
\[
\max(L(\theta)-L(\theta'))
\]
于是有
\[
\begin{align*}
L(\theta) - L(\theta') &= \log\left(\sum_ZP(Y|Z,\theta)P(Z|\theta)\right) - \log P(Y|\theta')\\
&= \log\left(\sum_ZP(Z|Y,\theta')\dfrac{P(Y|Z,\theta)P(Z|\theta)}{P(Z|Y,\theta')}\right) - \log P(Y|\theta')\\
&\ge \sum_ZP(Z|Y,\theta')\log\dfrac{P(Y|Z,\theta)P(Z|\theta)}{P(Z|Y,\theta')} - \log P(Y|\theta')\\
&= \sum_ZP(Z|Y,\theta')\log\dfrac{P(Y|Z,\theta)P(Z|\theta)}{P(Z|Y,\theta')} - \log P(Y|\theta')\sum_ZP(Z|Y,\theta')\\
&= \sum_ZP(Z|Y,\theta')\log P(Y|Z,\theta)P(Z|\theta) - \log P(Y|\theta') - \sum_ZP(Z|Y,\theta')\log P(Z|Y,\theta')
\end{align*}
\]
后面两项是常数项,去掉还是等价的。于是便有
\[\begin{align*}
\arg\max_\theta L(\theta) - L(\theta') &= \arg\max_\theta\sum_ZP(Z|Y,\theta')\log P(Y|Z,\theta)P(Z|\theta) \\
&- \log P(Y|\theta') - \sum_ZP(Z|Y,\theta')\log P(Z|Y,\theta')\\
&= \arg\max_\theta\sum_ZP(Z|Y,\theta')\log P(Y|Z,\theta)P(Z|\theta)\\
&= \arg\max_\theta \sum_ZP(Z|Y,\theta')\log P(Y,Z|\theta)
\end{align*}\]
上面这种形式是采用李航的《统计学习方法》中的形式,与PRML中的形式初看有些不一样,我们只需要把最初的\(P(Y|Z,\theta)P(Z|\theta)\)替换为\(P(Y,Z|\theta)\)就一样了。
EM算法以及推导的更多相关文章
- EM算法简易推导
EM算法推导 网上和书上有关于EM算法的推导,都比较复杂,不便于记忆,这里给出一个更加简短的推导,用于备忘. 在不包含隐变量的情况下,我们求最大似然的时候只需要进行求导使导函数等于0,求出参数即可.但 ...
- 【机器学习】EM算法详细推导和讲解
今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教. 众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的 ...
- EM算法-完整推导
前篇已经对EM过程,举了扔硬币和高斯分布等案例来直观认识了, 目标是参数估计, 分为 E-step 和 M-step, 不断循环, 直到收敛则求出了近似的估计参数, 不多说了, 本篇不说栗子, 直接来 ...
- Machine Learning系列--EM算法理解与推导
EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算 ...
- EM算法理论与推导
EM算法(Expectation-maximization),又称最大期望算法,是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计(或极大后验概率估计) 从定义可知,该算法是用来估计参数的,这 ...
- EM算法
EM算法的推导
- 猪猪的机器学习笔记(十四)EM算法
EM算法 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大 ...
- EM算法原理总结
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断等等.本文就对 ...
- NLP —— 图模型(零):EM算法简述及简单示例(三硬币模型)
最近接触了pLSA模型,该模型需要使用期望最大化(Expectation Maximization)算法求解. 本文简述了以下内容: 为什么需要EM算法 EM算法的推导与流程 EM算法的收敛性定理 使 ...
随机推荐
- 经典的MapReduce1中的失败
经典的MapReduce1中的失败在MapReduce1运行时,主要考虑三种失败的模式,运行任务失败.tasktracker失败以及jobtracker失败1. 任务运行失败首先考虑子任务失败的情况. ...
- VC 写注册表
BOOL Running() { HKEY hKey; LPCTSTR strRegPath = L"SOFTWARE\\Microsoft\\Windows\\CurrentVersion ...
- 转 Nova: 虚机的块设备总结 [Nova Instance Block Device]
和物理机一样,虚拟机包括几个重要的部分:CPU.内存.磁盘设备.网络设备等.本文将简要总结虚机磁盘设备有关知识. 1. Nova boot CLI 中有关虚机块设备的几个参数 nova boot CL ...
- jedis提纲
A01 - jedis库介绍 A01 - 在多线程下使用Jedis A01 - Jedis的八种调用方式 A02 - API使用文档 A02 - Jedis代码编程使用(简单的使用) A03 ...
- 2017-02-20 Sql Server2016安装后无法找到Microsoft Sql Server Management Studio管理器
最近安装的sql sever2016后发现没有Sql server management studio管理工具,无法操作sql server 解决方案,可去官网单独下载 Sql Server Mana ...
- 特殊字符处理(WPF)
WPF XAML 特殊字符(小于号.大于号.引号.&符号) - Andrew.Wangxu 时间 2013-09-07 18:14:00 博客园-所有随笔区原文 http://www.cn ...
- ural 2015 Zhenya moves from the dormitory(模拟)
2015. Zhenya moves from the dormitory Time limit: 1.0 secondMemory limit: 64 MB After moving from hi ...
- hdu 1846 Brave Game(bash)
Brave Game Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- 关于设置UITableView的背景图片
在UITableViewController中,要设置UITableView的背景图片,以前常用的方法是使用backgroundcolor属性,这个属性可以通过UIImage来获取,但最近发现这个方法 ...
- redis学习主从配置
配置slave服务器只需要在配置文件中加入如下配置: slaveof 127.0.0.1 6379 即:slaveof masterip masterport