EM算法以及推导
EM算法
Jensen不等式
其实Jensen不等式正是我们熟知的convex函数和concave函数性质,对于convex函数,有
\[
\lambda f(x) + (1-\lambda)f(y)\ge f(\lambda x + (1-\lambda)f(y)),\ where\ 0\le\lambda\le 1
\]
推广一下,便有
\[
f(\sum_{i=1}^n\lambda_ix_i)\le\sum_{i=1}^n\lambda_if(x_i),\ where \sum_{i=1}^n\lambda_i = 1
\]
这就是Jensen不等式,写成期望的形式便有
\[
f(E(x))\le E(f(x))
\]
对于concave函数,只需不等号反向,因为对convex函数取负得到的是concave函。
EM算法推导
我们的目的是最大化似然函数\(P(X|\theta)\),为了计算方便,取对数,得到
\[
L(\theta)=\ln P(X|\theta)
\]
假设我们已知\(\theta^n\),现在要求新的\(\theta\),为了极大化似然函数,我们期望最大化
\[
\max(L(\theta)-L(\theta'))
\]
于是有
\[
\begin{align*}
L(\theta) - L(\theta') &= \log\left(\sum_ZP(Y|Z,\theta)P(Z|\theta)\right) - \log P(Y|\theta')\\
&= \log\left(\sum_ZP(Z|Y,\theta')\dfrac{P(Y|Z,\theta)P(Z|\theta)}{P(Z|Y,\theta')}\right) - \log P(Y|\theta')\\
&\ge \sum_ZP(Z|Y,\theta')\log\dfrac{P(Y|Z,\theta)P(Z|\theta)}{P(Z|Y,\theta')} - \log P(Y|\theta')\\
&= \sum_ZP(Z|Y,\theta')\log\dfrac{P(Y|Z,\theta)P(Z|\theta)}{P(Z|Y,\theta')} - \log P(Y|\theta')\sum_ZP(Z|Y,\theta')\\
&= \sum_ZP(Z|Y,\theta')\log P(Y|Z,\theta)P(Z|\theta) - \log P(Y|\theta') - \sum_ZP(Z|Y,\theta')\log P(Z|Y,\theta')
\end{align*}
\]
后面两项是常数项,去掉还是等价的。于是便有
\[\begin{align*}
\arg\max_\theta L(\theta) - L(\theta') &= \arg\max_\theta\sum_ZP(Z|Y,\theta')\log P(Y|Z,\theta)P(Z|\theta) \\
&- \log P(Y|\theta') - \sum_ZP(Z|Y,\theta')\log P(Z|Y,\theta')\\
&= \arg\max_\theta\sum_ZP(Z|Y,\theta')\log P(Y|Z,\theta)P(Z|\theta)\\
&= \arg\max_\theta \sum_ZP(Z|Y,\theta')\log P(Y,Z|\theta)
\end{align*}\]
上面这种形式是采用李航的《统计学习方法》中的形式,与PRML中的形式初看有些不一样,我们只需要把最初的\(P(Y|Z,\theta)P(Z|\theta)\)替换为\(P(Y,Z|\theta)\)就一样了。
EM算法以及推导的更多相关文章
- EM算法简易推导
EM算法推导 网上和书上有关于EM算法的推导,都比较复杂,不便于记忆,这里给出一个更加简短的推导,用于备忘. 在不包含隐变量的情况下,我们求最大似然的时候只需要进行求导使导函数等于0,求出参数即可.但 ...
- 【机器学习】EM算法详细推导和讲解
今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教. 众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的 ...
- EM算法-完整推导
前篇已经对EM过程,举了扔硬币和高斯分布等案例来直观认识了, 目标是参数估计, 分为 E-step 和 M-step, 不断循环, 直到收敛则求出了近似的估计参数, 不多说了, 本篇不说栗子, 直接来 ...
- Machine Learning系列--EM算法理解与推导
EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算 ...
- EM算法理论与推导
EM算法(Expectation-maximization),又称最大期望算法,是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计(或极大后验概率估计) 从定义可知,该算法是用来估计参数的,这 ...
- EM算法
EM算法的推导
- 猪猪的机器学习笔记(十四)EM算法
EM算法 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大 ...
- EM算法原理总结
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断等等.本文就对 ...
- NLP —— 图模型(零):EM算法简述及简单示例(三硬币模型)
最近接触了pLSA模型,该模型需要使用期望最大化(Expectation Maximization)算法求解. 本文简述了以下内容: 为什么需要EM算法 EM算法的推导与流程 EM算法的收敛性定理 使 ...
随机推荐
- SolrCloud 5.5.5 + Zookeeper + HDFS使用
安装sol r 三个节点192.168.1.231,192.168.1.234,192.168.1.235 下载安装包solr.tar.gz 解压 tar -zxvf solr.tar.gz 配置ZK ...
- 书_Delphi
1. 有讲 坦克大战 的那本Delphi叫什么 叫做:<<Delphi深度历险>> 2.
- keystone v2/v3
Changing from APIv2.0 to APIv3 in Keystone - Openstack Juno on Ubuntu 1. 更换v3 的policy文件 mv /etc/keys ...
- Keystone Federation Identity
转自 http://wsfdl.com/openstack/2016/01/14/Keystone-Federation-Identity.html Keystone federation ident ...
- Codeforces 895C Square Subsets:状压dp【组合数结论】
题目链接:http://codeforces.com/problemset/problem/895/C 题意: 给你n个数a[i].(n <= 10^5, 1 <= a[i] <= ...
- 五一培训 清北学堂 DAY3
今天是钟皓曦老师的讲授~ 今天的内容:动态规划 1.动态规划 动态规划很难总结出一套规律 例子:斐波那契数列 0,1,1,2,3,5,8,…… F[0]=0 F[1]=1 F[[n]=f[n-1]+ ...
- php 实现微信模拟登陆、获取用户列表及群发消息功能示例
本文实例讲述了php实现微信模拟登陆.获取用户列表及群发消息功能.分享给大家供大家参考,具体如下: ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...
- LightOJ - 1104 概率
题意:每年n天,求最少几个人使这些人中最少两个人生日相同的概率大于0.5 题解:直接递推,假设有k个人,所有情况为n^k,没有相同的情况为n*(n-1)*...*(n-k+1),可以算出1e5以内不超 ...
- MPEG4、XVID、AVC有什么区别
MPEG-4包含XviD和DivX,而AVC优于二者mpeg4 DVD用的多,101mpeg4有AVC格式(加强版MP4)AVC/H.264是一种最新且技术含量最高的视频编码格式,由MPEG-4标准进 ...
- Brackets Sequence(升级版)
个人心得:又是途径问题,我怕是又炸了.看了题解他的意思就是找出最短的添加顺序的断点,则只要 根据断点添加就好了,注意递归的奥妙之处吧,暂时还真得是拿他没办法. 题目描述: 定义合法的括号序列如下: 1 ...