Batch训练的反向传播过程
Batch训练的反向传播过程
本文试图通过Softmax理解Batch训练的反向传播过程
采用的网络包含一层全连接和一层softmax,具体网络如下图所示:

交叉熵成本函数: \[L = - \frac{1}{m}\sum\limits_{i = 1}^m {\sum\limits_{j = 1}^N {{y_{ij}}\log {{\hat y}_{ij}}} }.\]
where \(m\) is the number of sample, \(N\) denotes the number of class, \({{\hat y}_{ij}} = \frac{{{e^{{s_{ij}}}}}}{{\sum\limits_j {{e^{{s_{ij}}}}} }}\) is the ouput of softmax, \(y_{ij}\) is the lable for sample \(i\).
当假设3个Sample的样本label均为\([1,0,0]^\rm{T}\)时,上式可简化为:
\[L = - \frac{1}{m}\sum\limits_{i = 1}^m {{y_{i1}}\log {{\hat y}_{i1}}}, \]
Softmax层反向传播: \[\frac{{\partial L}}{{\partial {s_{i1}}}} = {{\hat y}_{i1}} - 1,i\in\{1,\cdots,m\},\]
\[\frac{{\partial L}}{{\partial {s_{ij}}}} = {{\hat y}_{ij}}(j \ne 1),i\in\{1,\cdots,m\}.\]
全连接层反向传播:
\[ \begin{array}{l} \frac{{\partial L}}{{\partial {w_{a1}}}} = \sum\limits_{i = 1}^m {\left( {\frac{{\partial L}}{{\partial {s_{i1}}}}\frac{{\partial {s_{i1}}}}{{\partial {w_{a1}}}}} \right)} = \frac{1}{m}\sum\limits_{i = 1}^m {\left( {{{\hat y}_{i1}} - 1} \right){x_{ia}}} \\ \frac{{\partial L}}{{\partial {w_{a2}}}} = \sum\limits_{i = 1}^m {\left( {\frac{{\partial L}}{{\partial {s_{i2}}}}\frac{{\partial {s_{i2}}}}{{\partial {w_{a2}}}}} \right)} = \frac{1}{m}\sum\limits_{i = 1}^m {{{\hat y}_{i2}}{x_{ia}}} \\ \frac{{\partial L}}{{\partial {w_{a3}}}} = \sum\limits_{i = 1}^m {\left( {\frac{{\partial L}}{{\partial {s_{i3}}}}\frac{{\partial {s_{i3}}}}{{\partial {w_{a3}}}}} \right)} = \frac{1}{m}\sum\limits_{i = 1}^m {{{\hat y}_{i3}}{x_{ia}}} \\ \frac{{\partial L}}{{\partial {b_{a1}}}} = \frac{1}{m}\sum\limits_{i = 1}^m {\left( {{{\hat y}_{i1}} - 1} \right)} \\ \frac{{\partial L}}{{\partial {b_{a2}}}} = \frac{1}{m}\sum\limits_{i = 1}^m {{{\hat y}_{i2}}} \\ \frac{{\partial L}}{{\partial {b_{a3}}}} = \frac{1}{m}\sum\limits_{i = 1}^m {{{\hat y}_{i3}}} \end{array} \]
Batch训练的反向传播过程的更多相关文章
- 【python实现卷积神经网络】卷积层Conv2D反向传播过程
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- 《神经网络的梯度推导与代码验证》之CNN前向和反向传播过程的代码验证
在<神经网络的梯度推导与代码验证>之CNN的前向传播和反向梯度推导 中,我们学习了CNN的前向传播和反向梯度求导,但知识仍停留在纸面.本篇章将基于深度学习框架tensorflow验证我们所 ...
- 深度学习基础-基于Numpy的多层前馈神经网络(FFN)的构建和反向传播训练
本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及花书的读书笔记.本文将以多分类任务为例,介绍多层的前馈神经网络(Feed Forward Networks,FFN)加上 ...
- BP神经网络反向传播之计算过程分解(详细版)
摘要:本文先从梯度下降法的理论推导开始,说明梯度下降法为什么能够求得函数的局部极小值.通过两个小例子,说明梯度下降法求解极限值实现过程.在通过分解BP神经网络,详细说明梯度下降法在神经网络的运算过程, ...
- BP(back propagation)反向传播
转自:http://www.zhihu.com/question/27239198/answer/89853077 机器学习可以看做是数理统计的一个应用,在数理统计中一个常见的任务就是拟合,也就是给定 ...
- cs231n(三) 误差反向传播
摘要 本节将对反向传播进行直观的理解.反向传播是利用链式法则递归计算表达式的梯度的方法.理解反向传播过程及其精妙之处,对于理解.实现.设计和调试神经网络非常关键.反向求导的核心问题是:给定函数 $f( ...
- CS231n课程笔记翻译5:反向传播笔记
译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Backprop Note,课程教师Andrej Karpathy授权翻译.本篇教程由杜客翻译完成,堃堃和巩子嘉进行校对修改.译文含公式和代码, ...
- 【cs231n】反向传播笔记
前言 首先声明,以下内容绝大部分转自知乎智能单元,他们将官方学习笔记进行了很专业的翻译,在此我会直接copy他们翻译的笔记,有些地方会用红字写自己的笔记,本文只是作为自己的学习笔记.本文内容官网链接: ...
- 反向传播(BP)算法理解以及Python实现
全文参考<机器学习>-周志华中的5.3节-误差逆传播算法:整体思路一致,叙述方式有所不同: 使用如上图所示的三层网络来讲述反向传播算法: 首先需要明确一些概念, 假设数据集\(X=\{x^ ...
随机推荐
- 笔记:Spring Cloud Eureka 服务发现与消费
服务发现与消费,其服务发现的任务是由Eureka的客户端完成,而服务的消费任务由Ribbon.JerseyClient等完成,Ribbon是一个基于HTTP和TCP的客户端负载均衡器:使用Jersey ...
- 1.使用dom4j解析XML文件
一.dom4j的简介 dom4j是一个Java的XML API,是jdom的升级品,用来读写XML文件的.dom4j是一个十分优秀的JavaXML API,具有性能优异.功能强大和极其易使用的特点,它 ...
- 解决设置clickablespan后长按冲突的问题
解决设置ClickableSpan后长按冲突的问题 问题描述 3月份修改别人代码的时候想要屏蔽TextView的长按事件,发现TextView有重写OnTouchEvent方法,然后在其中加了长按事件 ...
- dubbo服务简单搭建
一.初识dubbo: 架构图: Provider: 暴露服务的服务提供方. Consumer: 调用远程服务的服务消费方. Registry: 服务注册与发现的注册中心. Monitor: 统计服务的 ...
- Win调整和小技巧
推荐win下一些个人爱用的工具软件(以及使用心得)和一些系统调整方法,让win下不尽人意的设置发生小小变化,让整天摸着电脑的ITer们的生活更有乐趣. 本人酷爱收集一些好用的软件,若各位也对某个或某些 ...
- C作业--初步
第一周: 知识点:第一个c程序 练习:printf 第二周: 知识点:常量变量,数据类型和运算符 练习:数学公式的求解:比如重力加速度,华氏温度与摄氏温度的转换,汇率等. 第三周: 知识点:print ...
- 听翁恺老师mooc笔记(15)--文件的输入与输出
<>重定向 如果使用标准的printf输出,有一个比较简便的方法,可以将程序的结果写入一个文件.使用<和>符号,将程序运行结果重定向到文件中去,具体使用到的代码如下: ./te ...
- 第1次作业:我与我的IT梦
第一部分:结缘计算机 1.1最美的风景,一直在路上 说实话以前没有想过自己将学习计算机这个专业,在大二之前,我还是教师教育学院的一名师范生,机缘巧合,赶上了学校允许师范专业的同学转到非师范专业,于是, ...
- Hibernate之深入持久化对象
Hibernate是一个彻底的O/R Mapping 框架.之所以说彻底,是因为相对于其他的 框架 ,如Spring JDBC,iBatis 需要手动的管理SQL语句,Hibernate采用了完全 面 ...
- OO前三次作业总结
一.第一次作业 1.程序设计分析  图1 第一次作业类图 ![name](https://images2018.cnb ...