TensorFlow实现XOR
TensorFlow基础
1、概念
- TF使用图表示计算任务,图包括数据(Data)、流(Flow)、图(Graph)
- 图中节点称为op,一个op获得多个Tensor
- Tensor为张量,TF中用到的数据都是Tensor
- 图必须在
会话
中启动
示例
计算两个矩阵的乘积,
x = tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])
y = tf.constant([[0,0,1.0],[0,0,1.0],[0,0,1.0]])
z = tf.matmul(x3,y3)
# Session激活z,得到计算结果
with tf.Session() as sess:
print(sess.run(z))
2、Tensor类型
(1)常量
值不可变
constant(
value,(数值)
dtype=None,(数据类型)
shape=None,(指定形状)
name='Const',(命名)
verify_shape=False()
)
代码
x = tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]],dtype=tf.float32,shape=[3,3],name='x')
# 简写
x = tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])
(2)变量
代码
v2=tf.Variable(tf.constant(2),name='x')
(3)占位符
定义过程,执行时赋值
placeholder(
value,(数值)
dtype=None,(数据类型)
shape=None,(指定形状)
)
代码
x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
z = tf.multiply(x, y)
with tf.Session() as sess:
print(sess.run(z, feed_dict={x:[1.0] , y: [2.0]}))
(4)平均值
计算张量的各个维度上的元素的平均值。
reduce_mean(
input_tensor,
axis=None,
keep_dims=False,
name=None,
reduction_indices=None
)
代码
x = tf.constant([[1.0,2.0],[3.0,4.0]],dtype=tf.float32,shape=[2,2])
tf.reduce_mean(x) ==> 2.5
tf.reduce_mean(x, 0) ==> [2. 3.]
tf.reduce_mean(x, 1) ==> [1.5 3.5]
(5) 优化器
tf.train.GradientDescentOptimizer
是实现梯度下降
算法的优化器。
机器学习、深度学习概念
1、代价函数
整个训练集上所有样本误差的平均。
2、目标函数
经过优化后,期望获得的函数。
3、激活函数
负责将神经元的输入映射到输出端。增加神经网络模型的非线性
。
激活函数几种常见类型:
- sigmod函数
\]
- tanh函数
\]
- Relu函数
\]
4、学习率
学习率决定参数
移动到最优值
的速度
快慢。学习率过大,会越过最优值
。学习率过小,优化效率低
。
5、前向传播(Forward Propagation)
第n层
神经元的值决定第n+1层
神经元的值。
6、反向传播(Back Propagation)
通过前向传播获取到的结果。为减少误差,进行反向求偏导数
,修正参数,再进行前向传播,一直迭代,直到训练获得最小的误差。
代码实现
import numpy as np
import tensorflow as tf
# 训练样本占位
data = tf.placeholder(tf.float32, shape=(4, 2))
label = tf.placeholder(tf.float32, shape=(4, 1))
with tf.variable_scope('layer1') as scope:
# 权重
weight = tf.get_variable(name='weight', shape=(2, 2))
# 偏置项
bias = tf.get_variable(name='bias', shape=(2,))
x = tf.nn.sigmoid(tf.matmul(data, weight) + bias)
with tf.variable_scope('layer2') as scope:
weight = tf.get_variable(name='weight', shape=(2, 1))
bias = tf.get_variable(name='bias', shape=(1,))
x = tf.matmul(x, weight) + bias
# 激活函数
preds = tf.nn.sigmoid(x)
# 损失函数
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=label, logits=x))
# 学习率占位
learning_rate = tf.placeholder(tf.float32)
# 梯度下降优化器
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
# 训练样本
train_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
train_label = np.array([[0], [1], [1], [0]])
# 执行
with tf.Session() as sess:
# 初始化变量
sess.run(tf.global_variables_initializer())
for step in range(10000):
if step < 3000:
lr = 1
elif step < 6000:
lr = 0.1
else:
lr = 0.01
_, l, pred = sess.run([optimizer, loss, preds], feed_dict={data: train_data, label: train_label, learning_rate: lr})
if step % 500:
print('Step: {} -> Loss: {} -> Predictions: {}'.format(step, l, pred))
TensorBoard与计算图可视化
TensorBoard是一个可视化工具,能够有效地展示Tensorflow在运行过程中的计算图、各种指标随着时间的变化趋势以及训练中使用到的数据信息。
代码
writer = tf.summary.FileWriter('graphs',tf.get_default_graph())
writer.close()
打开图,输入命令
zhijiefang@fangzhijie-PC:~/test$ tensorboard --logdir=graphs
TensorBoard 1.11.0 at http://fangzhijie-PC:6006 (Press CTRL+C to quit)
计算图显示
运行结果
...
Step: 9993 -> Loss: 0.3484194874763489 -> Predictions: [[0.00179099]
[0.49935436]
[0.9978059 ]
[0.50105 ]]
Step: 9994 -> Loss: 0.3484194874763489 -> Predictions: [[0.00179098]
[0.49935436]
[0.9978059 ]
[0.50105 ]]
Step: 9995 -> Loss: 0.3484194874763489 -> Predictions: [[0.00179098]
[0.49935436]
[0.9978059 ]
[0.50105 ]]
Step: 9996 -> Loss: 0.3484194874763489 -> Predictions: [[0.00179097]
[0.49935436]
[0.9978059 ]
[0.50105 ]]
Step: 9997 -> Loss: 0.3484194576740265 -> Predictions: [[0.00179096]
[0.49935436]
[0.9978059 ]
[0.50105 ]]
Step: 9998 -> Loss: 0.3484194278717041 -> Predictions: [[0.00179096]
[0.49935436]
[0.9978059 ]
[0.50105 ]]
Step: 9999 -> Loss: 0.3484194278717041 -> Predictions: [[0.00179095]
[0.49935436]
[0.9978059 ]
[0.50104994]]
TensorFlow实现XOR的更多相关文章
- 【深度学习与TensorFlow 2.0】入门篇
注:因为毕业论文需要用到相关知识,借着 TF 2.0 发布的时机,重新捡起深度学习.在此,也推荐一下优达学城与 TensorFlow 合作发布的TF 2.0入门课程,下面的例子就来自该课程. 原文发布 ...
- Reading | 《TensorFlow:实战Google深度学习框架》
目录 三.TensorFlow入门 1. TensorFlow计算模型--计算图 I. 计算图的概念 II. 计算图的使用 2.TensorFlow数据类型--张量 I. 张量的概念 II. 张量的使 ...
- TensorFlow API 汉化
TensorFlow API 汉化 模块:tf 定义于tensorflow/__init__.py. 将所有公共TensorFlow接口引入此模块. 模块 app module:通用入口点脚本. ...
- tensorflow学习笔记——自编码器及多层感知器
1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...
- 李宏毅 Tensorflow解决Fizz Buzz问题
提出问题 一个网友的博客,记录他在一次面试时,碰到面试官要求他在白板上用TensorFlow写一个简单的网络实现异或(XOR)功能.这个本身并不难,单层感知器不能解决异或问题是学习神经网络中的一个常识 ...
- TensorFlow学习笔记7-深度前馈网络(多层感知机)
深度前馈网络(前馈神经网络,多层感知机) 神经网络基本概念 前馈神经网络在模型输出和模型本身之间没有反馈连接;前馈神经网络包含反馈连接时,称为循环神经网络. 前馈神经网络用有向无环图表示. 设三个函数 ...
- Tensorflow 官方版教程中文版
2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源,同日,极客学院组织在线TensorFlow中文文档翻译.一个月后,30章文档全部翻译校对完成,上线并提供电子书下载,该 ...
- [LeetCode] Maximum XOR of Two Numbers in an Array 数组中异或值最大的两个数字
Given a non-empty array of numbers, a0, a1, a2, … , an-1, where 0 ≤ ai < 231. Find the maximum re ...
- tensorflow学习笔记二:入门基础
TensorFlow用张量这种数据结构来表示所有的数据.用一阶张量来表示向量,如:v = [1.2, 2.3, 3.5] ,如二阶张量表示矩阵,如:m = [[1, 2, 3], [4, 5, 6], ...
随机推荐
- window10 hello 人脸识别无法启动相机的问题
win10设置人脸识别的时候无法打开相机.但是在qq,其他软件中可以调用相机,可以打开相机的时候.windows hello 就是打不开,不知道怎么回事. 尝试打开电源选项,有一个 选项,还原一下 ...
- 分布式团队中沟通引发的问题, itest 解决之道
导读: 从问题场景和 itest 优雅解决办法及示例2部分来阐述 1.问题场景: 研发团队是分散在几地的分布式团队,经常会因沟通引来一些问题.如下三图是开发觉得测试进度太慢,一番对话之后, 接下来他们 ...
- netcore程序部署到docker
1.基础准备 1. ubuntu 18.04 2. docker version 18.09 3. netcore 2.1 2.简介 自从netcore支持跨平台之后,以及现在很多公司都是采用容器化部 ...
- 动态路由协议(RIP)
虽然静态路由在某些时刻很有用,但是必须手工配置每条路由条目,对于大中型的网络或拓补经常发生变化的清空,配置和维护静态路由的工作量就变得非常繁重,而且不小心还容易出错,因此就需要一种不需要手工配置的路由 ...
- 总结微信公众平台网页开发中遇到的ios的兼容问题
1. ios中音频不自动播放: 原因:出于节省流量的初衷,ios系统禁止音视频自动播放. 解决方案:使用微信的JS-SDK. DEMO: 先引入微信的JS-SDK, <script src=&q ...
- U盘制作微pe工具箱(实战)
分享人:广州华软 浩言 前言 相信大家平时生活中还是工作上使用电脑的时间还是比较多的,有时候电脑出现故障,比如系统文件损坏,没办法正常开机,或者是开机密码忘了,想要重装系统等,下面我推荐一个U盘启动项 ...
- 监控EXPDP/IMPDP进度
--获取JOB_NAMEselect * from DBA_DATAPUMP_JOBS;OWNER_NAME JOB_NAME OPERATION JOB_MODE STATE DEGREE ATTA ...
- Beanstalkd工作队列
Beanstalkd工作队列Beanstalkd 是什么Beanstalkd是目前一个绝对可靠,易于安装的消息传递服务,主要用例是管理不同部分和工人之间的工作流应用程序的部署通过工作队列和消息堆栈,类 ...
- python 线程(一)理论部分
Python线程 进程有很多优点,它提供了多道编程,可以提高计算机CPU的利用率.既然进程这么优秀,为什么还要线程呢?其实,仔细观察就会发现进程还是有很多缺陷的. 主要体现在一下几个方面: 进程只能在 ...
- 第四周LINUX 学习笔记
内核编译丶sed丶awk Linux:单内核 模块化:动态 /lib/modules lsmod,modinfo,modprobe,insmod,,modprobe -r , ...