有关最短路径的最后一个算法——Dijkstra

迪杰斯特拉算法是由荷兰计算机科学家迪杰斯特拉于1959 年提出的,因此又叫迪杰斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

本蒟蒻认为这个是最为重要的一个有关最短路径的算法

  Dijkstra使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。

  它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

  它主要采用的是一种贪心的策略,声明一个数组dis来保存源点到各个顶点的最短距离和一个保存已经找到了最短路径的顶点的集合:T,初始时,原点 s 的路径权重被赋为 0 (dis[s] = 0)。若对于顶点 s 存在能直接到达的边(s,m),则把dis[m]设为w(s, m),同时把所有其他(s不能直接到达的)顶点的路径长度设为无穷大。初始时,集合T只有顶点s。
然后,从dis数组选择最小值,则该值就是源点s到该值对应的顶点的最短路径,并且把该点加入到T中,OK,此时完成一个顶点,
  然后,我们需要看看新加入的顶点是否可以到达其他顶点并且看看通过该顶点到达其他点的路径长度是否比源点直接到达短,如果是,那么就替换这些顶点在dis中的值。
  最后,又从dis中找出最小值,重复上述动作,直到T中包含了图的所有顶点。

下面用以为大佬的图来举个例子

首先是相对来说较容易理解的代码

#include<bits/stdc++.h>
using namespace std;
inline int read()
{
int X=,w=;
char c=getchar();
while(c<''||c>'')
{
if (c=='-')
{
w=-;
c=getchar();
}
}
while(c>=''&&c<='')
{
X=(X<<)+(X<<)+c-'';
c=getchar();
}
return X*w;
}
const int maxn=;
int g[maxn][maxn];//g数组用来存储图;
int n,m,s;//分别表示点的个数、有向边的个数、出发点的编号;
bool vis[maxn];//表示是否已经到达过;
int d[maxn];//d[i]表示从询问点到点i的最短路径;
const int inf=;
int main ()
{
n=read(),m=read(),s=read();
for(int i=;i<=n;i++)
{
d[i]=inf;
for(int j=;j<=n;j++)
g[i][j]=inf;
g[i][i]=;//自己到自己的最短路径当然是0
}//初始化数组;
for(int i=;i<=m;i++)
{
int u=read(),v=read(),w=read();
//u,v,i分别表示第i条有向边的出发点、目标点和长度;
g[u][v]=w;//读入;
}
vis[s]=;//将起点标记成已经到达;
for(int i=;i<=n;i++)
d[i]=g[s][i];//将最短路径初始化;
//如果两点之间有路线就初始化为该距离,如果没有就还是inf;
while()
{
int stt_node=,stt_dis=inf;//stt=shortest 初始化两个变量
// stt_node表示最短路径的终点,stt_dis表示最短路径的长度
for(int i=;i<=n;i++)
{
if(vis[i]==&&d[i]<stt_dis)
//如果该点还没有到达,并且他的距离小于最短距离
{
stt_node=i,stt_dis=d[i];//更新变量
}
}
if(stt_node==) break;
//如果已经没有可以更新的最短路径了,就说明已经结束了
vis[stt_node]=;//将该点标记成已经到达
for(int i=;i<=n;i++)
{
if(vis[i]||g[stt_node][i]==inf)continue;
//如果并没有到达或者是两点之间没有路径,就跳出循环
d[i]=min(d[i],stt_dis+g[stt_node][i]);//更新最短路径
}
}
for(int i=;i<=n;i++)
printf("%d ",d[i]);
return ;
}

下面便是代码实现了qwq:

#include<bits/stdc++.h>
using namespace std;
int n,m;
const int nmax=,mmax=;
int fir[nmax],to[mmax],nxt[mmax],dis[mmax],ecnt;
void add(int u,int v,int w)
{
to[++ecnt]=v;
dis[ecnt]=w;
nxt[ecnt]=fir[u];
fir[u]=ecnt;
}
struct node
{
int x,d;
node(int x,int d):x(x),d(d){}
};
bool operator<(node a,node b)
{
return a.d>b.d;
}
int d[nmax];
bool vis[nmax];
void dijkstra(int s)
{
memset(vis,,sizeof(vis));
memset(d,-,sizeof(d));
priority_queue<node>q;
q.push(node(s,));
d[s]=;
while(!q.empty())
{
node h=q.top();
q.pop();
if(vis[h.x])continue;
vis[h.x]=;
for(int e=fir[h.x];e;e=nxt[e])
{
if(vis[to[e]])continue;
if(d[to[e]]==-)
{
d[to[e]]=h.d+dis[e];
}
else
{
d[to[e]]=min(d[to[e]],h.d+dis[e]);
}
vis[to[e]]=;
q.push(node(to[e],d[to[e]]));
}
}
}
int main()
{
cin>>n>>m;
for(int i=;i<=m;i++)
{
int u,v,w;
cin>>u>>v>>w;
add(u,v,w);
add(v,u,w);
}
dijkstra();
for(int i=;i<=n;i++)
{
cout<<d[i]<<' ';
}
}

Dijkstra【迪杰斯特拉算法】的更多相关文章

  1. c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法

    c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法 图的最短路径的概念: 一位旅客要从城市A到城市B,他希望选择一条途中中转次数最少的路线.假设途中每一站都需要换车,则这个问题反映到图上就是 ...

  2. 图解Dijkstra(迪杰斯特拉)算法+代码实现

    简介 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的 ...

  3. (Dijkstra)迪杰斯特拉算法-最短路径算法

    迪杰斯特拉算法是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 算法思想:设G=(V,E)是一个带权有向图 ...

  4. Dijkstra(迪杰斯特拉)算法求解最短路径

    过程 首先需要记录每个点到原点的距离,这个距离会在每一轮遍历的过程中刷新.每一个节点到原点的最短路径是其上一个节点(前驱节点)到原点的最短路径加上前驱节点到该节点的距离.以这个原则,经过N轮计算就能得 ...

  5. C# 迪杰斯特拉算法 Dijkstra

    什么也不想说,现在直接上封装的方法: using System; using System.Collections.Concurrent; using System.Collections.Gener ...

  6. 最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(C/C++)

    Dijkstra算法 ———————————最后更新时间:2011.9.25———————————Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径. ...

  7. 图->最短路径->单源最短路径(迪杰斯特拉算法Dijkstra)

    文字描述 引言:如下图一个交通系统,从A城到B城,有些旅客可能关心途中中转次数最少的路线,有些旅客更关心的是节省交通费用,而对于司机,里程和速度则是更感兴趣的信息.上面这些问题,都可以转化为求图中,两 ...

  8. 最短路问题:迪杰斯特拉算法(Dijsktra)

    Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Di ...

  9. 最短路之Dijkstra(迪杰斯特拉)

    一般用法: Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代 ...

随机推荐

  1. web.xml的<url-parttern>的匹配规则

    <url-parttern>顾名思义是对url(统一资源定位符)的一种匹配,是对“http:........."地址的匹配,但是会减去应用上下文,就是你的web程序的名字,如果你 ...

  2. 02 入门 - ASP.NET MVC 5 概述

    目录索引:<ASP.NET MVC 5 高级编程>学习笔记 本篇内容: 一.One ASP.NET 二.新的Web项目体验 三.ASP.NET Identity 四.Bootstrap 模 ...

  3. CSS实现无外边框列表效果

    方法一:使用外层容器切割 给每一个 li 设定右边框和下边框线 把ul放置在一个外层div中,设定div的宽高,通过overflow:hidden将一部分li的边框隐藏 此方法只需要计算父容器的宽高, ...

  4. python的学习笔记__初识函数

    函数定义与调用 #函数定义 def mylen(): """计算s1的长度""" s1 = "hello world" ...

  5. 【设计模式】原型模式 Pototype Pattern

    前面讲了创建一个对象实例的方法单例模式Singleton Pattern, 创造多个产品的工厂模式(简单工厂模式 Simple Factory Pattern, 工厂方法模式 FactoryMothe ...

  6. C# 利用位运算传递多个参数方法

    前言 在工作中用sendMessage的方法向另外一个进程中传递窗体的位置,长度,宽度四个值,但是sendMessage的方法签名中只有两个参数.于是在网上找到了一些代码,找到了这个利用位运算来合并参 ...

  7. 从零学习Fluter(六):Flutter仿boss直聘v1.0重构

    今天继续学习flutter,觉得这个优秀的东西,许多方面还需要完善,作为一个后来者,要多向别人学习.俗话说,“学无先后,达者为师”.今天呢,我又重新把flutter_boss这个项目代码 从头到脚看了 ...

  8. Centos7 安装mysql-8.0.13(rpm)

    yum or rpm? yum安装方式很方便,但是下载mysql的时候从官网下载,速度较慢. rpm安装方式可以从国内镜像下载mysql的rpm包,比较快.rpm也适合离线安装. 环境说明 操作系统: ...

  9. 从Linux 与 Unix 异同,看开源世界的发展!

    从Linux 与 Unix 异同,看开源世界的发展! 如果你是一名20多岁或30多岁的软件开发人员,那么你已成长在一个由Linux主导的世界中.数十年来,它一直是数据中心的重要参与者,尽管很难找到明确 ...

  10. springmvc源码分析——入门看springmvc的加载过程

    本文将分析springmvc是如何在容器启动的时候将各个模块加载完成容器的创建的. 我知道在web.xml文件中我们是这样配置springmvc的: 可以看到,springmvc的核心控制器就是Dis ...