Elasticsearch结构化搜索_在案例中实战使用term filter来搜索数据
1、根据用户ID、是否隐藏、帖子ID、发帖日期来搜索帖子
(1)插入一些测试帖子数据
POST /forum/article/_bulk { "index": { "_id": 1 }} { "articleID" : "XHDK-A-1293-#fJ3", "userID" : 1, "hidden": false, "postDate": "2017-01-01" } { "index": { "_id": 2 }} { "articleID" : "KDKE-B-9947-#kL5", "userID" : 1, "hidden": false, "postDate": "2017-01-02" } { "index": { "_id": 3 }} { "articleID" : "JODL-X-1937-#pV7", "userID" : 2, "hidden": false, "postDate": "2017-01-01" } { "index": { "_id": 4 }} { "articleID" : "QQPX-R-3956-#aD8", "userID" : 2, "hidden": true, "postDate": "2017-01-02" }
初步来说,就先搞4个字段,因为整个es是支持json document格式的,所以说扩展性和灵活性非常之好。如果后续随着业务需求的增加,要在document中增加更多的field,那么我们可以很方便的随时添加field。但是如果是在关系型数据库中,比如mysql,我们建立了一个表,现在要给表中新增一些column,那就很坑爹了,必须用复杂的修改表结构的语法去执行。而且可能对系统代码还有一定的影响。
GET /forum/_mapping/article { "forum": { "mappings": { "article": { "properties": { "articleID": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "hidden": { "type": "boolean" }, "postDate": { "type": "date" }, "userID": { "type": "long" } } } } } }
现在es 5.2版本,type=text,默认会设置两个field,一个是field本身,比如articleID,就是分词的;还有一个的话,就是field.keyword,articleID.keyword,默认不分词,会最多保留256个字符
(2)根据用户ID搜索帖子
GET /forum/article/_search { "query" : { "constant_score" : { "filter" : { "term" : { "userID" : 1 } } } } }
term filter/query:对搜索文本不分词,直接拿去倒排索引中匹配,你输入的是什么,就去匹配什么
比如说,如果对搜索文本进行分词的话,“helle world” --> “hello”和“world”,两个词分别去倒排索引中匹配
term,“hello world” --> “hello world”,直接去倒排索引中匹配“hello world”
(3)搜索没有隐藏的帖子
GET /forum/article/_search { "query" : { "constant_score" : { "filter" : { "term" : { "hidden" : false } } } } }
(4)根据发帖日期搜索帖子
GET /forum/article/_search { "query" : { "constant_score" : { "filter" : { "term" : { "postDate" : "2017-01-01" } } } } }
(5)根据帖子ID搜索帖子
GET /forum/article/_search { "query" : { "constant_score" : { "filter" : { "term" : { "articleID" : "XHDK-A-1293-#fJ3" } } } } } { "took": 1, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 0, "max_score": null, "hits": [] } } GET /forum/article/_search { "query" : { "constant_score" : { "filter" : { "term" : { "articleID.keyword" : "XHDK-A-1293-#fJ3" } } } } } { "took": 2, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 1, "max_score": 1, "hits": [ { "_index": "forum", "_type": "article", "_id": "1", "_score": 1, "_source": { "articleID": "XHDK-A-1293-#fJ3", "userID": 1, "hidden": false, "postDate": "2017-01-01" } } ] } }
articleID.keyword,是es最新版本内置建立的field,就是不分词的。所以一个articleID过来的时候,会建立两次索引,一次是自己本身,是要分词的,分词后放入倒排索引;另外一次是基于articleID.keyword,不分词,保留256个字符最多,直接一个字符串放入倒排索引中。
所以term filter,对text过滤,可以考虑使用内置的field.keyword来进行匹配。但是有个问题,默认就保留256个字符。所以尽可能还是自己去手动建立索引,指定not_analyzed吧。在最新版本的es中,不需要指定not_analyzed也可以,将type=keyword即可。
(6)查看分词
GET /forum/_analyze { "field": "articleID", "text": "XHDK-A-1293-#fJ3" }
默认是analyzed的text类型的field,建立倒排索引的时候,就会对所有的articleID分词,分词以后,原本的articleID就没有了,只有分词后的各个word存在于倒排索引中。
term,是不对搜索文本分词的,XHDK-A-1293-#fJ3 --> XHDK-A-1293-#fJ3;但是articleID建立索引的时候,XHDK-A-1293-#fJ3 --> xhdk,a,1293,fj3
(7)重建索引
DELETE /forum PUT /forum { "mappings": { "article": { "properties": { "articleID": { "type": "keyword" } } } } }
POST /forum/article/_bulk { "index": { "_id": 1 }} { "articleID" : "XHDK-A-1293-#fJ3", "userID" : 1, "hidden": false, "postDate": "2017-01-01" } { "index": { "_id": 2 }} { "articleID" : "KDKE-B-9947-#kL5", "userID" : 1, "hidden": false, "postDate": "2017-01-02" } { "index": { "_id": 3 }} { "articleID" : "JODL-X-1937-#pV7", "userID" : 2, "hidden": false, "postDate": "2017-01-01" } { "index": { "_id": 4 }} { "articleID" : "QQPX-R-3956-#aD8", "userID" : 2, "hidden": true, "postDate": "2017-01-02" }
(8)重新根据帖子ID和发帖日期进行搜索
GET /forum/article/_search { "query" : { "constant_score" : { "filter" : { "term" : { "articleID" : "XHDK-A-1293-#fJ3" } } } } }
2、梳理学到的知识点
(1)term filter:根据exact value进行搜索,数字、boolean、date天然支持
(2)text需要建索引时指定为not_analyzed,才能用term query
(3)相当于SQL中的单个where条件
select *
from forum.article
where articleID='XHDK-A-1293-#fJ3'
详细可查看视频教程:Elasticsearch顶尖高手系列:高手进阶篇
Elasticsearch结构化搜索_在案例中实战使用term filter来搜索数据的更多相关文章
- 分布式结构化存储系统-HBase应用案例
分布式结构化存储系统-HBase应用案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 为了让读者更进一步了解HBase在实际生成环境中的应用方法,在董西成的书里介绍两个经典的HB ...
- ElasticSearch 结构化搜索
1.介绍 结构化搜索(Structured search) 是指有关探询那些具有内在结构数据的过程.比如日期.时间和数字都是结构化的:它们有精确的格式,我们可以对这些格式进行逻辑操作. 比较常见的操作 ...
- ElasticSearch 结构化搜索全文
1.介绍 上篇介绍了搜索结构化数据的简单应用示例,现在来探寻 全文搜索(full-text search) :怎样在全文字段中搜索到最相关的文档. 全文搜索两个最重要的方面是: 相关性(Relevan ...
- Elasticsearch结构化搜索与查询
Elasticsearch 的功能之一就是搜索,搜索主要分为两种类型,结构化搜索和全文搜索.结构化搜索是指有关查询那些具有内在结构数据的过程.比如日期.时间和数字都是结构化的:它们有精确的格式,我们可 ...
- Elasticsearch 结构化搜索、keyword、Term查询
前言 Elasticsearch 中的结构化搜索,即面向数值.日期.时间.布尔等类型数据的搜索,这些数据类型格式精确,通常使用基于词项的term精确匹配或者prefix前缀匹配.本文还将新版本的&qu ...
- 第25章 SEH结构化异常处理_未处理异常及向量化异常
25.1 UnhandledExceptionFilter函数详解 25.1.1 BaseProcessStart伪代码(Kernel32内部) void BaseProcessStart(PVOID ...
- elasticsearch结构化查询过滤语句-----4
1.之前三节讲述的都是索引结构及内容填充的部分,既然添加了数据那我们的目的无非就是增产改查crudp,我先来讲讲查询-----结构化查询 我们看上图截图两种方式: 1)第一种,在索引index5类型s ...
- 第24章 SEH结构化异常处理_异常处理及软件异常
24.1 程序的结构 (1)try/except框架 __try{ //被保护的代码块 …… } __except(except fileter/*异常过滤程序*/){ //异常处理程序 } (2) ...
- ElasticStack学习(九):深入ElasticSearch搜索之词项、全文本、结构化搜索及相关性算分
一.基于词项与全文的搜索 1.词项 Term(词项)是表达语意的最小单位,搜索和利用统计语言模型进行自然语言处理都需要处理Term. Term的使用说明: 1)Term Level Query:Ter ...
随机推荐
- LeetCode之“树”:Binary Tree Preorder && Inorder && Postorder Traversal
Binary Tree Preorder Traversal 题目链接 题目要求: Given a binary tree, return the preorder traversal of its ...
- Leetcode_202_Happy Number
+ 92 = 82 82 + 22 = 68 62 + 82 = 100 12 + 02 + 02 = 1 思路: (1)题意为判断给定的整数是否为一个"快乐的数",所谓快乐的数需 ...
- i++是否原子操作?并解释为什么???????
不是原子操作.理由: 1.i++分为三个阶段: 内存到寄存器 寄存器自增 写回内存 这三个阶段中间都可以被中断分离开. 2.++i首先要看编译器是怎么编译的, 某些编译器比如VC在非优化版本中会编译 ...
- ExtJS:GridPanel之renderer:function()和itemdblclick : function()方法参数详解
要使用GridPanel,首先要定义Store,而在创建Store的时候必须要有Model,因此我们首先来定义Model: Ext.define("Gpsdata", { exte ...
- ERP-非财务人员的财务培训教(二)------如何评价公司/部门经营业绩
一.财务比率分析 第一节 流动性比率 第二节 经营比率 第三节 资本结构比率 第四节 获利能力比率 第五节 现金流量比率 第六节 获现能力比率 二.财务比率金字塔 第二部分 如何评价公 ...
- C语言关键字static的绝妙用途
为什么要说static妙,它确实是妙,在软件开发或者单片机开发过程中,大家总以为static就是一个静态变量,在变量类型的前面加上就自动清0了,还有就是加上static关键字的,不管是变量还是关键字, ...
- Spring--ApplicationContext
//中心接口,给应用提供配置信息 public interface ApplicationContext extends EnvironmentCapable, ListableBeanFactory ...
- Zeromq自连接错误
Zeromq自连接错误(金庆的专栏)Zeromq消息中间件开发的服务器和客户端不必按顺序启动,客户端可以在服务器开启之前启动.这是Zmq特别好用的一大特性.利用该特性,网游各功能服务器可以任意重启,实 ...
- Glog 和 Log4cxx 的对比
转自:http://monkeycn.iteye.com/blog/1021703 #1 Log4cxx有比较完整的配置文档方式,xml和java配置档:GLog只能通过启动程序的时候的输入参数来配置 ...
- LeetCode(65)-Power of Four
题目: Given an integer (signed 32 bits), write a function to check whether it is a power of 4. Example ...