Elasticsearch结构化搜索_在案例中实战使用term filter来搜索数据
1、根据用户ID、是否隐藏、帖子ID、发帖日期来搜索帖子
(1)插入一些测试帖子数据
POST /forum/article/_bulk
{ "index": { "_id": 1 }}
{ "articleID" : "XHDK-A-1293-#fJ3", "userID" : 1, "hidden": false, "postDate": "2017-01-01" }
{ "index": { "_id": 2 }}
{ "articleID" : "KDKE-B-9947-#kL5", "userID" : 1, "hidden": false, "postDate": "2017-01-02" }
{ "index": { "_id": 3 }}
{ "articleID" : "JODL-X-1937-#pV7", "userID" : 2, "hidden": false, "postDate": "2017-01-01" }
{ "index": { "_id": 4 }}
{ "articleID" : "QQPX-R-3956-#aD8", "userID" : 2, "hidden": true, "postDate": "2017-01-02" }
初步来说,就先搞4个字段,因为整个es是支持json document格式的,所以说扩展性和灵活性非常之好。如果后续随着业务需求的增加,要在document中增加更多的field,那么我们可以很方便的随时添加field。但是如果是在关系型数据库中,比如mysql,我们建立了一个表,现在要给表中新增一些column,那就很坑爹了,必须用复杂的修改表结构的语法去执行。而且可能对系统代码还有一定的影响。
GET /forum/_mapping/article
{
"forum": {
"mappings": {
"article": {
"properties": {
"articleID": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"hidden": {
"type": "boolean"
},
"postDate": {
"type": "date"
},
"userID": {
"type": "long"
}
}
}
}
}
}
现在es 5.2版本,type=text,默认会设置两个field,一个是field本身,比如articleID,就是分词的;还有一个的话,就是field.keyword,articleID.keyword,默认不分词,会最多保留256个字符
(2)根据用户ID搜索帖子
GET /forum/article/_search
{
"query" : {
"constant_score" : {
"filter" : {
"term" : {
"userID" : 1
}
}
}
}
}
term filter/query:对搜索文本不分词,直接拿去倒排索引中匹配,你输入的是什么,就去匹配什么
比如说,如果对搜索文本进行分词的话,“helle world” --> “hello”和“world”,两个词分别去倒排索引中匹配
term,“hello world” --> “hello world”,直接去倒排索引中匹配“hello world”
(3)搜索没有隐藏的帖子
GET /forum/article/_search
{
"query" : {
"constant_score" : {
"filter" : {
"term" : {
"hidden" : false
}
}
}
}
}
(4)根据发帖日期搜索帖子
GET /forum/article/_search
{
"query" : {
"constant_score" : {
"filter" : {
"term" : {
"postDate" : "2017-01-01"
}
}
}
}
}
(5)根据帖子ID搜索帖子
GET /forum/article/_search
{
"query" : {
"constant_score" : {
"filter" : {
"term" : {
"articleID" : "XHDK-A-1293-#fJ3"
}
}
}
}
}
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 0,
"max_score": null,
"hits": []
}
}
GET /forum/article/_search
{
"query" : {
"constant_score" : {
"filter" : {
"term" : {
"articleID.keyword" : "XHDK-A-1293-#fJ3"
}
}
}
}
}
{
"took": 2,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 1,
"hits": [
{
"_index": "forum",
"_type": "article",
"_id": "1",
"_score": 1,
"_source": {
"articleID": "XHDK-A-1293-#fJ3",
"userID": 1,
"hidden": false,
"postDate": "2017-01-01"
}
}
]
}
}
articleID.keyword,是es最新版本内置建立的field,就是不分词的。所以一个articleID过来的时候,会建立两次索引,一次是自己本身,是要分词的,分词后放入倒排索引;另外一次是基于articleID.keyword,不分词,保留256个字符最多,直接一个字符串放入倒排索引中。
所以term filter,对text过滤,可以考虑使用内置的field.keyword来进行匹配。但是有个问题,默认就保留256个字符。所以尽可能还是自己去手动建立索引,指定not_analyzed吧。在最新版本的es中,不需要指定not_analyzed也可以,将type=keyword即可。
(6)查看分词
GET /forum/_analyze
{
"field": "articleID",
"text": "XHDK-A-1293-#fJ3"
}
默认是analyzed的text类型的field,建立倒排索引的时候,就会对所有的articleID分词,分词以后,原本的articleID就没有了,只有分词后的各个word存在于倒排索引中。
term,是不对搜索文本分词的,XHDK-A-1293-#fJ3 --> XHDK-A-1293-#fJ3;但是articleID建立索引的时候,XHDK-A-1293-#fJ3 --> xhdk,a,1293,fj3
(7)重建索引
DELETE /forum
PUT /forum
{
"mappings": {
"article": {
"properties": {
"articleID": {
"type": "keyword"
}
}
}
}
}
POST /forum/article/_bulk
{ "index": { "_id": 1 }}
{ "articleID" : "XHDK-A-1293-#fJ3", "userID" : 1, "hidden": false, "postDate": "2017-01-01" }
{ "index": { "_id": 2 }}
{ "articleID" : "KDKE-B-9947-#kL5", "userID" : 1, "hidden": false, "postDate": "2017-01-02" }
{ "index": { "_id": 3 }}
{ "articleID" : "JODL-X-1937-#pV7", "userID" : 2, "hidden": false, "postDate": "2017-01-01" }
{ "index": { "_id": 4 }}
{ "articleID" : "QQPX-R-3956-#aD8", "userID" : 2, "hidden": true, "postDate": "2017-01-02" }
(8)重新根据帖子ID和发帖日期进行搜索
GET /forum/article/_search
{
"query" : {
"constant_score" : {
"filter" : {
"term" : {
"articleID" : "XHDK-A-1293-#fJ3"
}
}
}
}
}
2、梳理学到的知识点
(1)term filter:根据exact value进行搜索,数字、boolean、date天然支持
(2)text需要建索引时指定为not_analyzed,才能用term query
(3)相当于SQL中的单个where条件
select *
from forum.article
where articleID='XHDK-A-1293-#fJ3'
详细可查看视频教程:Elasticsearch顶尖高手系列:高手进阶篇
Elasticsearch结构化搜索_在案例中实战使用term filter来搜索数据的更多相关文章
- 分布式结构化存储系统-HBase应用案例
分布式结构化存储系统-HBase应用案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 为了让读者更进一步了解HBase在实际生成环境中的应用方法,在董西成的书里介绍两个经典的HB ...
- ElasticSearch 结构化搜索
1.介绍 结构化搜索(Structured search) 是指有关探询那些具有内在结构数据的过程.比如日期.时间和数字都是结构化的:它们有精确的格式,我们可以对这些格式进行逻辑操作. 比较常见的操作 ...
- ElasticSearch 结构化搜索全文
1.介绍 上篇介绍了搜索结构化数据的简单应用示例,现在来探寻 全文搜索(full-text search) :怎样在全文字段中搜索到最相关的文档. 全文搜索两个最重要的方面是: 相关性(Relevan ...
- Elasticsearch结构化搜索与查询
Elasticsearch 的功能之一就是搜索,搜索主要分为两种类型,结构化搜索和全文搜索.结构化搜索是指有关查询那些具有内在结构数据的过程.比如日期.时间和数字都是结构化的:它们有精确的格式,我们可 ...
- Elasticsearch 结构化搜索、keyword、Term查询
前言 Elasticsearch 中的结构化搜索,即面向数值.日期.时间.布尔等类型数据的搜索,这些数据类型格式精确,通常使用基于词项的term精确匹配或者prefix前缀匹配.本文还将新版本的&qu ...
- 第25章 SEH结构化异常处理_未处理异常及向量化异常
25.1 UnhandledExceptionFilter函数详解 25.1.1 BaseProcessStart伪代码(Kernel32内部) void BaseProcessStart(PVOID ...
- elasticsearch结构化查询过滤语句-----4
1.之前三节讲述的都是索引结构及内容填充的部分,既然添加了数据那我们的目的无非就是增产改查crudp,我先来讲讲查询-----结构化查询 我们看上图截图两种方式: 1)第一种,在索引index5类型s ...
- 第24章 SEH结构化异常处理_异常处理及软件异常
24.1 程序的结构 (1)try/except框架 __try{ //被保护的代码块 …… } __except(except fileter/*异常过滤程序*/){ //异常处理程序 } (2) ...
- ElasticStack学习(九):深入ElasticSearch搜索之词项、全文本、结构化搜索及相关性算分
一.基于词项与全文的搜索 1.词项 Term(词项)是表达语意的最小单位,搜索和利用统计语言模型进行自然语言处理都需要处理Term. Term的使用说明: 1)Term Level Query:Ter ...
随机推荐
- Erlang Rebar 使用指南之三:Rebar和OTP程序约定和命令
Erlang Rebar 使用指南之三:Rebar和OTP程序约定和命令 全文目录: https://github.com/rebar/rebar/wiki 本章位置: https://github. ...
- C++中重载、覆盖与隐藏的区别(转)
本文摘自林锐博士的<高质量C++/C编程指南>. 成员函数的重载.覆盖(override)与隐藏很容易混淆,C++程序员必须要搞清楚概念,否则错误将防不胜防. 1.重载与覆盖 成员函数被重 ...
- SharePoint 列表项通过自定义WebService读取
简述:给其他系统提供集成,发现SharePoint自带的WebService各种不好使,索性就自己写一点,也当做自己学习的记录了.当然内容比较简单,希望大侠们不要介意,也不要骂我啊.好了,进入正题吧. ...
- Linux进程快照相关知识
查寻内核版本 uname -a // uname -r 进程快照 ps report a snapshot of the current processes USER ...
- CSS3实现多种背景效果
灵活的背景定位 实现效果: 将背景图定位到距离容器底边 10px 且距离右边 20px 的位置. background-position 方案 实现代码: <div>海盗密码</di ...
- cannot import name '_imaging' 与No module named PIL解决方法
今天学习廖雪峰的python 第三方模块pillow一章. 直接使用from PIL import Image 会报"No module named PIL",显然这是没有安装pi ...
- Fiddler抓包使用教程-Android应用抓包
转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/74439165 本文出自[赵彦军的博客] Fiddler 也可以支持对手机应用进行 ...
- Python学习摘要201802
[基础]变量设计机制 [个人理解]python的变量与C++语言中的指针类似,是指向内存数据的一个引用.变量分为不可变变量string/int/float/tuple和可变变量list/dict. 对 ...
- jQuery的学习笔记4
JQuery学习笔记3 2.9属性选择器 属性选择器就是根据元素的属性和属性值作为过滤条件,来匹配对应的DOM元素.属性选择器一般都以中括号作为起止分界符 它的形式如下: [attribute] [a ...
- NewLife.Net——网络压测单机1.88亿tps
NewLife.Net压力测试,峰值4.2Gbps,50万pps,消息大小24字节,消息处理速度1.88亿tps! 共集合20台高配ECS参与测试,主服务器带宽6Gbps.100万pps,16核心64 ...