B-Tree和B+Tree的区别
B+树索引是B+树在数据库中的一种实现,是最常见也是数据库中使用最为频繁的一种索引。B+树中的B代表平衡(balance),而不是二叉(binary),因为B+树是从最早的平衡二叉树演化而来的。在讲B+树之前必须先了解二叉查找树、平衡二叉树(AVLTree)和平衡多路查找树(B-Tree),B+树即由这些树逐步优化而来。
二叉查找树
二叉树具有以下性质:左子树的键值小于根的键值,右子树的键值大于根的键值。
如下图所示就是一棵二叉查找树,
对该二叉树的节点进行查找发现深度为1的节点的查找次数为1,深度为2的查找次数为2,深度为n的节点的查找次数为n,因此其平均查找次数为 (1+2+2+3+3+3) / 6 = 2.3次
二叉查找树可以任意地构造,同样是2,3,5,6,7,8这六个数字,也可以按照下图的方式来构造:
但是这棵二叉树的查询效率就低了。因此若想二叉树的查询效率尽可能高,需要这棵二叉树是平衡的,从而引出新的定义——平衡二叉树,或称AVL树。
平衡二叉树(AVL Tree)
平衡二叉树(AVL树)在符合二叉查找树的条件下,还满足任何节点的两个子树的高度最大差为1。下面的两张图片,左边是AVL树,它的任何节点的两个子树的高度差<=1;右边的不是AVL树,其根节点的左子树高度为3,而右子树高度为1;
如果在AVL树中进行插入或删除节点,可能导致AVL树失去平衡,这种失去平衡的二叉树可以概括为四种姿态:LL(左左)、RR(右右)、LR(左右)、RL(右左)。它们的示意图如下:
这四种失去平衡的姿态都有各自的定义:
LL:LeftLeft,也称“左左”。插入或删除一个节点后,根节点的左孩子(Left Child)的左孩子(Left Child)还有非空节点,导致根节点的左子树高度比右子树高度高2,AVL树失去平衡。
RR:RightRight,也称“右右”。插入或删除一个节点后,根节点的右孩子(Right Child)的右孩子(Right Child)还有非空节点,导致根节点的右子树高度比左子树高度高2,AVL树失去平衡。
LR:LeftRight,也称“左右”。插入或删除一个节点后,根节点的左孩子(Left Child)的右孩子(Right Child)还有非空节点,导致根节点的左子树高度比右子树高度高2,AVL树失去平衡。
RL:RightLeft,也称“右左”。插入或删除一个节点后,根节点的右孩子(Right Child)的左孩子(Left Child)还有非空节点,导致根节点的右子树高度比左子树高度高2,AVL树失去平衡。
B-Tree和B+Tree的区别:
在B+Tree中,所有数据记录节点都是按照键值大小顺序存放在同一层的叶子节点上,而非叶子节点上只存储key值信息,这样可以大大加大每个节点存储的key值数量,降低B+Tree的高度。
B树:
B+树:
B-Tree和B+Tree的区别的更多相关文章
- WPF中Logical Tree和Visual Tree的区别
The Logical TreeThe logical tree describes the relations between elements of the user interface. The ...
- B-Tree、B+Tree和B*Tree
B-Tree(这儿可不是减号,就是常规意义的BTree) 是一种多路搜索树: 1.定义任意非叶子结点最多只有M个儿子:且M>2: 2.根结点的儿子数为[2, M]: 3.除根结点以外的非叶子结点 ...
- 【Luogu1501】Tree(Link-Cut Tree)
[Luogu1501]Tree(Link-Cut Tree) 题面 洛谷 题解 \(LCT\)版子题 看到了顺手敲一下而已 注意一下,别乘爆了 #include<iostream> #in ...
- 【BZOJ3282】Tree (Link-Cut Tree)
[BZOJ3282]Tree (Link-Cut Tree) 题面 BZOJ权限题呀,良心luogu上有 题解 Link-Cut Tree班子提 最近因为NOIP考炸了 学科也炸了 时间显然没有 以后 ...
- [LeetCode] Encode N-ary Tree to Binary Tree 将N叉树编码为二叉树
Design an algorithm to encode an N-ary tree into a binary tree and decode the binary tree to get the ...
- 平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树
平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树 (a)和(b)都是排序二叉树,但是查找(b)的93节点就需要查找6次,查找(a)的93 ...
- WPF中的Visual Tree和Logical Tree与路由事件
1.Visual Tree和Logical TreeLogical Tree:逻辑树,WPF中用户界面有一个对象树构建而成,这棵树叫做逻辑树,元素的声明分层结构形成了所谓的逻辑树!!Visual Tr ...
- 笔试算法题(39):Trie树(Trie Tree or Prefix Tree)
议题:TRIE树 (Trie Tree or Prefix Tree): 分析: 又称字典树或者前缀树,一种用于快速检索的多叉树结构:英文字母的Trie树为26叉树,数字的Trie树为10叉树:All ...
- LC 431. Encode N-ary Tree to Binary Tree 【lock,hard】
Design an algorithm to encode an N-ary tree into a binary tree and decode the binary tree to get the ...
- 将百分制转换为5分制的算法 Binary Search Tree ordered binary tree sorted binary tree Huffman Tree
1.二叉搜索树:去一个陌生的城市问路到目的地: for each node, all elements in its left subtree are less-or-equal to the nod ...
随机推荐
- 使用 FFT 分析周期性数据
可以使用傅里叶变换来分析数据中的变化,例如一个时间段内的自然事件. 天文学家使用苏黎世太阳黑子相对数将几乎 300 年的太阳黑子的数量和大小制成表格.对大约 1700 至 2000 年间的苏黎世数绘图 ...
- vscode下面开发vue.js项目
vscode下面开发vue.js项目 https://blog.csdn.net/linzhiqiang0316/article/details/79176651 vscode下面开发vue.js ...
- Spring Boot 自定义 starter
一.简介 SpringBoot 最强大的功能就是把我们常用的场景抽取成了一个个starter(场景启动器),我们通过引入springboot 为我提供的这些场景启动器,我们再进行少量的配置就能使用相应 ...
- redis.conf常用配置说明
最近学了 Redis,在 Linux 上安装的,接下来就简单讲解一下修改 Redis 配置文件 修改密码: 新安装的 Redis 是默认没有密码的,可以给Redis设置一个密码 先进入 Redis 的 ...
- Android Studio教程01-的工程和目录结构解析
目录 1.主目录 1.1. app目录 1.2.项目资源文件夹res 2. 理解build.gradle文件 2.1. 外部build.gradle 2.2. app文件下的build.gradle ...
- 原 js实现数据持久化
在写js事件时,常常遇到点击一个事件,然后在若干时间以后需要知道最近一次点击的事件的结点.比如这里: 我点击树节点1,再点击tab2,然后我再来回切换tab,假如最后一次点击tab时在tab2上,这时 ...
- “等一下,我碰!”——常见的2D碰撞检测
转自:https://aotu.io/notes/2017/02/16/2d-collision-detection/ 在 2D 环境下,常见的碰撞检测方法如下: 外接图形判别法 轴对称包围盒(Axi ...
- Docker-单宿主机下的网络模式
docker利用namespaces和cgroups实现了应用隔离和资源控制,那么网络层优势如何实现的呢?是直接使用宿主机的网卡设备,还是独立创造出自己的网络设备?以及容器如何与外界通信,下面我们通过 ...
- 本地部署JAVA SE环境
一.下载安装JDK: 下载地址:https://www.oracle.com/technetwork/java/javase/downloads/jdk8-doc-downloads-2133158. ...
- ASP.NET实现二维码
using System;using System.Collections.Generic;using System.Drawing;using System.Linq;using System.Te ...