hdu 2243 考研路茫茫——单词情结(AC自动+矩阵)
考研路茫茫——单词情结
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4843 Accepted Submission(s): 1527
一天,Lele在某本单词书上看到了一个根据词根来背单词的方法。比如"ab",放在单词前一般表示"相反,变坏,离去"等。
于是Lele想,如果背了N个词根,那这些词根到底会不会在单词里出现呢。更确切的描述是:长度不超过L,只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个呢?这里就不考虑单词是否有实际意义。
比如一共有2个词根 aa 和 ab ,则可能存在104个长度不超过3的单词,分别为
(2个) aa,ab,
(26个)aaa,aab,aac...aaz,
(26个)aba,abb,abc...abz,
(25个)baa,caa,daa...zaa,
(25个)bab,cab,dab...zab。
这个只是很小的情况。而对于其他复杂点的情况,Lele实在是数不出来了,现在就请你帮帮他。
每组数据占两行。
第一行有两个正整数N和L。(0<N<6,0<L<2^31)
第二行有N个词根,每个词根仅由小写字母组成,长度不超过5。两个词根中间用一个空格分隔开。
由于结果可能非常巨大,你只需要输出单词总数模2^64的值。
52
/*
hdu 2243 考研路茫茫——单词情结(AC自动+矩阵) 给你m个子串,求包含至少一个子串的长度不大于n的字符串的种类数
所有可能: 26+26^2 + .... + 26^n
而且前面也求过一个子串都不包含的情况。即把他们的关系转换成矩阵mat
一个都不包含的情况: mat + mat^2 +..... + mat^n
对于求 次方和. mat+... mat^6 = mat+mat^2+mat^3 + mat^3*(mat+mat^2+mat^3)
于是求出两个的值然后减去即可 // 矩阵求a走m步到b的方案数 + A + A^2 + A^3 + ... + A^k的结果(两个矩阵的经典应用)
hhh-2016-04-23 22:33:39
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef unsigned long long ll;
typedef unsigned int ul;
const int maxn = 40010;
int tot; struct Matrix
{
int len;
ll ma[50][50];
Matrix() {}
Matrix(int L)
{
len = L;
}
}; Matrix mult(Matrix ta,Matrix tb)
{
Matrix tc;
tc.len = ta.len;
for(int i = 0; i < ta.len; i++)
{
for(int j = 0; j < ta.len; j++)
{
tc.ma[i][j] = 0;
for(int k = 0; k < ta.len; k++){
tc.ma[i][j] = tc.ma[i][j]+(ll)ta.ma[i][k]*tb.ma[k][j];
}
}
}
return tc;
} Matrix pow_mat(Matrix a,ll n)
{
Matrix cnt;
cnt.len = a.len;
memset(cnt.ma,0,sizeof(cnt.ma));
for(int i = 0 ; i < cnt.len; i++)
cnt.ma[i][i] = 1; while(n)
{
if(n&1) cnt = mult(cnt,a);
a = mult(a,a);
n >>= 1;
}
return cnt;
} Matrix Add(Matrix ta,Matrix tb)
{
Matrix tc;
tc.len = ta.len;
for(int i = 0;i < tc.len;i++)
{
for(int j = 0;j < tc.len;j++)
{
tc.ma[i][j] = (ta.ma[i][j]+tb.ma[i][j]);
}
}
return tc;
} struct Tire
{
int nex[50][26],fail[50],ed[50];
int root,L;
int newnode()
{
for(int i = 0; i < 26; i++)
nex[L][i] = -1;
ed[L++] = 0;
return L-1;
} void ini()
{
L = 0,root = newnode();
} void inser(char buf[])
{
int len = strlen(buf);
int now = root;
for(int i = 0; i < len; i++)
{
int ta = buf[i]-'a';
if(nex[now][ta] == -1)
nex[now][ta] = newnode();
now = nex[now][ta];
}
ed[now] ++;
} void build()
{
queue<int >q;
fail[root] = root;
for(int i = 0; i < 26; i++)
if(nex[root][i] == -1)
nex[root][i] = root;
else
{
fail[nex[root][i]] = root;
q.push(nex[root][i]);
}
while(!q.empty())
{
int now = q.front();
q.pop();
if(ed[fail[now]])
ed[now] = 1;
for(int i = 0; i < 26; i++)
{
if(nex[now][i] == -1)
nex[now][i] = nex[fail[now]][i];
else
{
fail[nex[now][i]] = nex[fail[now]][i];
q.push(nex[now][i]);
}
}
}
} Matrix to_mat()
{
Matrix mat(L);
memset(mat.ma,0,sizeof(mat.ma));
for(int i = 0;i < L;i++)
{
for(int j = 0;j < 26;j++)
{
if(!ed[nex[i][j]])
mat.ma[i][nex[i][j]] ++;
}
}
return mat;
}
}; Matrix mat; Matrix cal(int n)
{
if(n == 1)
return mat;
Matrix tp = cal(n/2);
if(n & 1)
{
Matrix t = pow_mat(mat,n/2+1);
tp = Add(tp,mult(t,tp));
tp = Add(tp,t);
}
else
{
Matrix t = pow_mat(mat,n/2);
tp = Add(tp,mult(t,tp));
}
return tp;
} ll pow_mod(ll a,int n)
{
ll cnt = 1;
while(n)
{
if(n&1) cnt = cnt*a;
a = a*a;
n >>= 1;
}
return cnt;
} ll ca(int n)
{
if(n == 1)
return 26;
ll tp = ca(n/2);
if(n & 1)
{
ll t = pow_mod(26,n/2+1);
tp = tp+t+tp*t;
}
else
{
ll t = pow_mod(26,n/2);
tp = tp+t*tp;
}
return tp;
} Tire ac;
char buf[20];
int main()
{
int n,m;
while(scanf("%d%d",&m,&n) != EOF)
{
ac.ini();
for(int i = 1; i <= m; i++)
{
scanf("%s",buf);
ac.inser(buf);
}
ac.build();
mat = ac.to_mat();
Matrix ans = cal(n);
ll tans = ca(n);
ll t = 0;
for(int i = 0;i < ans.len;i++)
{
t += ans.ma[0][i];
}
printf("%I64u\n",tans-t);
}
return 0;
}
hdu 2243 考研路茫茫——单词情结(AC自动+矩阵)的更多相关文章
- hdu 2243 考研路茫茫——单词情结 AC自动机 矩阵幂次求和
题目链接 题意 给定\(N\)个词根,每个长度不超过\(5\). 问长度不超过\(L(L\lt 2^{31})\),只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个? 思路 状态(AC自动 ...
- hdu 2243 考研路茫茫——单词情结 ac自动机+矩阵快速幂
链接:http://acm.hdu.edu.cn/showproblem.php?pid=2243 题意:给定N(1<= N < 6)个长度不超过5的词根,问长度不超过L(L <23 ...
- HDU 2243 考研路茫茫——单词情结(AC自动机+DP+快速幂)
题目链接 错的上头了... 这题是DNA的加强版,26^1 +26^2... - A^1-A^2... 先去学了矩阵的等比数列求和,学的是第二种方法,扩大矩阵的方法.剩下就是各种模板,各种套. #in ...
- HDU 2243 考研路茫茫——单词情结(AC自动机+矩阵)
考研路茫茫——单词情结 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- HDU 2243 考研路茫茫——单词情结
考研路茫茫——单词情结 Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID ...
- hdu_2243_考研路茫茫——单词情结(AC自动机+矩阵)
题目链接:hdu_2243_考研路茫茫——单词情结 题意: 让你求包含这些模式串并且长度不小于L的单词种类 题解: 这题是poj2788的升级版,没做过的强烈建议先做那题. 我们用poj2778的方法 ...
- HDU 2243 考研路茫茫——单词情结 求长度小于等于L的通路总数的方法
http://acm.hdu.edu.cn/showproblem.php?pid=2243 这是一题AC自动机 + 矩阵快速幂的题目, 首先知道总答案应该是26^1 + 26^2 + 26^3 .. ...
- HDU 2243考研路茫茫——单词情结 (AC自动机+矩阵快速幂)
背单词,始终是复习英语的重要环节.在荒废了3年大学生涯后,Lele也终于要开始背单词了. 一天,Lele在某本单词书上看到了一个根据词根来背单词的方法.比如"ab",放在单词前一般 ...
- HDU 2243 考研路茫茫——单词情结(AC自动机+矩阵快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=2243 题意: 给出m个模式串,求长度不超过n的且至少包含一个模式串的字符串个数. 思路: 如果做过poj2778 ...
随机推荐
- 201621123031 《Java程序设计》第6周学习总结
作业06-接口.内部类 1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 注1:关键词与内容不求多 ...
- edittext实现自动查询,刷新listview
mEdittextqueryvalue.addTextChangedListener(new TextWatcher() { @Override pub ...
- Flask 页面缓存逻辑,jinja2 过滤器,测试器
回调接入点-页面缓存逻辑 from flask import Flask,request,render_template from werkzeug.contrib.cache import Simp ...
- VS系列控制台闪退解决
查阅--->总结-->实践--> 按红色标识走 ,完美解决! 至此,完美解决:原理不深究:
- .NET Core装饰模式和.NET Core的Stream
该文章综合了几本书的内容. 某咖啡店项目的解决方案 某咖啡店供应咖啡, 客户买咖啡的时候可以添加若干调味料, 最后要求算出总价钱. Beverage是所有咖啡饮料的抽象类, 里面的cost方法是抽象的 ...
- iis / asp.net 使用 .config 和 .xml 文件的区别
由于在项目中有同学使用后缀为 .xml 的文件作为配置文件,而配置文件中有一些敏感信息被记录,如接口地址,Token,甚至还有数据库连接字符串. 以前都没想过为何微软会使用.config 的后缀在作为 ...
- 08-TypeScript中的类
类的概念通常是在后端开发中实现的思想,比如C#.C++或Java,传统的JavaScript开发通过使用原型模式来模拟类的功能.在TypeScript中,天生就是支持类 的,可以让前端的开发更加具有面 ...
- django启动uwsgi报错
查看uwsgi.log *** Starting uWSGI 2.0.17 (64bit) on [Thu Apr 5 17:46:15 2018] *** compiled with version ...
- 获取apk项目的MD5值和SHA1值
一些可说可不说的话: * 以前有一个更简单的方法,在as的右边工具栏的 gradle 面板中可以很方便的获取到: * 上次用也是在2年前,时间长了给忘记了,不过我记得我当时写了笔记,这会笔记不在身边, ...
- python网络爬虫与信息提取 学习笔记day2
Day2: 查看robots协议: 查看京东的robots协议 查看百度的robots协议,可以看到百度拒绝了搜狗的爬虫233 爬取京东商品页面相关信息: import requests url = ...