【BZOJ1084】最大子矩阵(动态规划)
【BZOJ1084】最大子矩阵(动态规划)
题面
题目描述
这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。
输入输出格式
输入格式:
第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767)。
输出格式:
只有一行为k个子矩阵分值之和最大为多少。
输入输出样例
输入样例#1
3 2 2
1 -3
2 3
-2 3
输出样例#1
9
题解
还是我太菜
想了半天,发现连数据范围都没有看
\(m≤2\)
。。。
是我太菜,什么都看不见
既然\(m≤2\),那么分情况直接搞就行了
第一种 \(m=1\)
很显然吧。。
设\(f[i][j]\)表示当前搞到第\(i\)行,已经选了\(j\)个子矩阵的最大值
暴力枚举一下上一个开始的位置
然后前缀和转移即可
第二种 \(m=2\)
设\(f[i][j][k]\)表示当前第一列的搞到\(i\),第二列的搞到\(j\),一共选了\(k\)个子矩阵的最大值
首先上下两列分开搞,类似\(m=1\)的转移,
然后当\(i=j\)时,显然可以两列一起转移
所以也类似于\(m=1\)的转移,
求和的时候搞两列的就行了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,m,g[200][5];
int K,f[101][101][15],s[5][200];
int ff[101][15];
int main()
{
n=read();m=read();K=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
g[i][j]=read();
for(int j=1;j<=m;++j)
for(int i=1;i<=n;++i)
s[j][i]=s[j][i-1]+g[i][j];
if(m==1)
{
memset(ff,-63,sizeof(ff));
ff[0][0]=0;
for(int i=1;i<=n;++i)
{
ff[i][0]=0;
for(int k=1;k<=K;++k)
{
ff[i][k]=ff[i-1][k];//不选
for(int j=0;j<i;++j)
ff[i][k]=max(ff[i][k],ff[j][k-1]+s[1][i]-s[1][j]);
}
}
printf("%d\n",ff[n][K]);
}
else
{
memset(f,-63,sizeof(f));
for(int i=0;i<=n;++i)
for(int j=0;j<=n;++j)
f[i][j][0]=0;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
{
for(int k=1;k<=K;++k)
{
f[i][j][k]=max(f[i][j][k],f[i-1][j][k]);
f[i][j][k]=max(f[i][j][k],f[i][j-1][k]);
for(int l=0;l<i;++l)
f[i][j][k]=max(f[i][j][k],f[l][j][k-1]+s[1][i]-s[1][l]);
for(int l=0;l<j;++l)
f[i][j][k]=max(f[i][j][k],f[i][l][k-1]+s[2][j]-s[2][l]);
if(i==j)
for(int l=0;l<i;++l)
f[i][j][k]=max(f[i][j][k],f[l][l][k-1]+s[1][i]+s[2][i]-s[1][l]-s[2][l]);
}
}
printf("%d\n",f[n][n][K]);
}
return 0;
}
【BZOJ1084】最大子矩阵(动态规划)的更多相关文章
- BZOJ1084 [SCOI2005]最大子矩阵 动态规划
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1084 题意概括 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注 ...
- 九度OJ 1497 面积最大的全1子矩阵 -- 动态规划
题目地址:http://ac.jobdu.com/problem.php?pid=1497 题目描述: 在一个M * N的矩阵中,所有的元素只有0和1,从这个矩阵中找出一个面积最大的全1子矩阵,所谓最 ...
- BZOJ 1084 [SCOI2005]最大子矩阵 - 动态规划
传送门 题目大意: 从矩阵中取出k个互不重叠的子矩阵,求最大的和. 题目分析: 对于m=1,直接最大m子段和. 对于m=2: \(dp[i][j][k]\)表示扫描到第一列i和第2列j时选取了k个矩阵 ...
- luogu P2258 子矩阵 |动态规划
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第22.44行和第22.44.55列交叉 ...
- [SCOI2005]最大子矩阵 (动态规划)
题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 输入格式: 第一行为n,m,k(1≤n≤100,1≤m≤2 ...
- [bzoj1084]最大子矩阵
用f[i][j][k]表示第一行前i个数,第二行前j个数选k个子矩形的答案,考虑转移:1.在第一行/第二行选择一个矩形2.当i=j时,可以选择一个两行的矩形注意要特判m=1的情况 1 #include ...
- [bzoj1084][SCOI2005]最大子矩阵_动态规划_伪·轮廓线dp
最大子矩阵 bzoj-1084 SCOI-2005 题目大意:给定一个n*m的矩阵,请你选出k个互不重叠的子矩阵使得它们的权值和最大. 注释:$1\le n \le 100$,$1\le m\le 2 ...
- 【动态规划】最大连续子序列和,最大子矩阵和,最大m子段和
1.最大字段和问题 求一个序列最大连续子序列之和. 例如序列[-1,-2,-3,4,5,-6]的最大子段和为4 + 5 = 9. ①枚举法 int MaxSum(int n,int *a){ int ...
- 【动态规划】最大子段和问题,最大子矩阵和问题,最大m子段和问题
http://blog.csdn.net/liufeng_king/article/details/8632430 1.最大子段和问题 问题定义:对于给定序列a1,a2,a3……an,寻找它 ...
随机推荐
- Redis 学习(三) —— 事务、消息发布订阅
一.Redis事务 Redis 提供的事务机制与传统的数据库事务有些不同,传统数据库事务必须维护以下特性:原子性(Atomicity), 一致性(Consistency),隔离性(Isolation) ...
- Linux-安装FFmpeg
FFmpeg官网:http://www.ffmpeg.org 官网介绍 FFmpeg is the leading multimedia framework, able to decode, enco ...
- Java经典编程题50道之十一
有1.2.3.4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? public class Example11 { public static void main(String[] arg ...
- 读《Linux Shell脚本攻略》(第2版) 总结
前段时间读完了<Linux Shell脚本攻略>(第2版)这本书,给部分想读这本书的人分享下个人感受. 说下这本书的难度吧.纯新手或者只懂少部分编程知识的人,读起来还是有很大难度的.以我为 ...
- Apache和Tomcat的区别与联系
作者:郭无心链接:https://www.zhihu.com/question/37155807/answer/72706896来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...
- js中的写出想jquery中的函数一样调用
1.IIFE: Immediately-Invoked function Expression 函数模块自调用 2.代码实现 <!DOCTYPE html> <html lang=& ...
- python实现三级菜单
一.要求: 1.一开始打印出所有省份和提示 2.用户输入省份以此查询城市 3.在按照输出的城市名提示用户输入,最后输出用户所查询的区县名 4.随时输入"back"可以返回上一级菜单 ...
- 麻省理工18年春软件构造课程阅读02“Java基础”
本文内容来自MIT_6.031_sp18: Software Construction课程的Readings部分,采用CC BY-SA 4.0协议. 由于我们学校(哈工大)大二软件构造课程的大部分素材 ...
- markdown学习经验
文章首发于我的github博客 前言 markdown是一种简洁有力的文本编辑语言.由于它十分好用,我将所有的博客都换成了markdown编辑器. 学习方法 工具为先,从工具中学习,熟能生巧. 工具选 ...
- 1.1 Python是一种什么样的语言
小时不识月,呼作白玉盘.很多人习惯地说Python不过是一种脚本语言而已,实际上这种说法是非常不准确的,完全不能体现出Python的强大.严格来说,Python是一门跨平台.开源.免费的解释型高级动态 ...