【BZOJ1084】最大子矩阵(动态规划)

题面

题目描述

这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。

输入输出格式

输入格式:

第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767)。

输出格式:

只有一行为k个子矩阵分值之和最大为多少。

输入输出样例

输入样例#1

3 2 2

1 -3

2 3

-2 3

输出样例#1

9

题解

还是我太菜

想了半天,发现连数据范围都没有看

\(m≤2\)

。。。

是我太菜,什么都看不见

既然\(m≤2\),那么分情况直接搞就行了

第一种 \(m=1\)

很显然吧。。

设\(f[i][j]\)表示当前搞到第\(i\)行,已经选了\(j\)个子矩阵的最大值

暴力枚举一下上一个开始的位置

然后前缀和转移即可

第二种 \(m=2\)

设\(f[i][j][k]\)表示当前第一列的搞到\(i\),第二列的搞到\(j\),一共选了\(k\)个子矩阵的最大值

首先上下两列分开搞,类似\(m=1\)的转移,

然后当\(i=j\)时,显然可以两列一起转移

所以也类似于\(m=1\)的转移,

求和的时候搞两列的就行了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,m,g[200][5];
int K,f[101][101][15],s[5][200];
int ff[101][15];
int main()
{
n=read();m=read();K=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
g[i][j]=read();
for(int j=1;j<=m;++j)
for(int i=1;i<=n;++i)
s[j][i]=s[j][i-1]+g[i][j];
if(m==1)
{
memset(ff,-63,sizeof(ff));
ff[0][0]=0;
for(int i=1;i<=n;++i)
{
ff[i][0]=0;
for(int k=1;k<=K;++k)
{
ff[i][k]=ff[i-1][k];//不选
for(int j=0;j<i;++j)
ff[i][k]=max(ff[i][k],ff[j][k-1]+s[1][i]-s[1][j]);
}
}
printf("%d\n",ff[n][K]);
}
else
{
memset(f,-63,sizeof(f));
for(int i=0;i<=n;++i)
for(int j=0;j<=n;++j)
f[i][j][0]=0;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
{
for(int k=1;k<=K;++k)
{
f[i][j][k]=max(f[i][j][k],f[i-1][j][k]);
f[i][j][k]=max(f[i][j][k],f[i][j-1][k]);
for(int l=0;l<i;++l)
f[i][j][k]=max(f[i][j][k],f[l][j][k-1]+s[1][i]-s[1][l]);
for(int l=0;l<j;++l)
f[i][j][k]=max(f[i][j][k],f[i][l][k-1]+s[2][j]-s[2][l]);
if(i==j)
for(int l=0;l<i;++l)
f[i][j][k]=max(f[i][j][k],f[l][l][k-1]+s[1][i]+s[2][i]-s[1][l]-s[2][l]);
}
}
printf("%d\n",f[n][n][K]);
}
return 0;
}

【BZOJ1084】最大子矩阵(动态规划)的更多相关文章

  1. BZOJ1084 [SCOI2005]最大子矩阵 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1084 题意概括 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注 ...

  2. 九度OJ 1497 面积最大的全1子矩阵 -- 动态规划

    题目地址:http://ac.jobdu.com/problem.php?pid=1497 题目描述: 在一个M * N的矩阵中,所有的元素只有0和1,从这个矩阵中找出一个面积最大的全1子矩阵,所谓最 ...

  3. BZOJ 1084 [SCOI2005]最大子矩阵 - 动态规划

    传送门 题目大意: 从矩阵中取出k个互不重叠的子矩阵,求最大的和. 题目分析: 对于m=1,直接最大m子段和. 对于m=2: \(dp[i][j][k]\)表示扫描到第一列i和第2列j时选取了k个矩阵 ...

  4. luogu P2258 子矩阵 |动态规划

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第22.44行和第22.44.55列交叉 ...

  5. [SCOI2005]最大子矩阵 (动态规划)

    题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 输入格式: 第一行为n,m,k(1≤n≤100,1≤m≤2 ...

  6. [bzoj1084]最大子矩阵

    用f[i][j][k]表示第一行前i个数,第二行前j个数选k个子矩形的答案,考虑转移:1.在第一行/第二行选择一个矩形2.当i=j时,可以选择一个两行的矩形注意要特判m=1的情况 1 #include ...

  7. [bzoj1084][SCOI2005]最大子矩阵_动态规划_伪·轮廓线dp

    最大子矩阵 bzoj-1084 SCOI-2005 题目大意:给定一个n*m的矩阵,请你选出k个互不重叠的子矩阵使得它们的权值和最大. 注释:$1\le n \le 100$,$1\le m\le 2 ...

  8. 【动态规划】最大连续子序列和,最大子矩阵和,最大m子段和

    1.最大字段和问题 求一个序列最大连续子序列之和. 例如序列[-1,-2,-3,4,5,-6]的最大子段和为4 + 5 = 9. ①枚举法 int MaxSum(int n,int *a){ int ...

  9. 【动态规划】最大子段和问题,最大子矩阵和问题,最大m子段和问题

    http://blog.csdn.net/liufeng_king/article/details/8632430 1.最大子段和问题      问题定义:对于给定序列a1,a2,a3……an,寻找它 ...

随机推荐

  1. weblogic修改jdk版本遇到的问题与解决方法

    1.修改setDomainEnv ,路径.../domains/xx_domain\bin\ 1.1修改JAVA_HOME为需要修改的路径 注意:BEA_JAVA_HOME路径不需修改 2.修改路径后 ...

  2. 使用performance进行网页性能监控

    由于项目需要, 需要对网页的一些性能进行监控, 接触到了performance, window.performance 提供了一组精确的数据,经过简单的计算就能得出一些网页性能数据, 将这些数据存储为 ...

  3. 金融&业务常识积累

    前言 在项目中遇到很多名词,不太明白其含义.这些名词都是和金融领域紧密相关并且与项目的业务有着直接的联系.因此,决定通过搜集资料和归纳总结,对经后的工作产生一定的帮助. 常见的金融知识 PDL: Pa ...

  4. Sourcetree的安装与使用

    1 安装遇到的问题 https://segmentfault.com/q/1010000007643870 解决该问题的方法: http://www.jianshu.com/p/3478e2a214a ...

  5. 配置python虚拟环境Virtualenv及pyenv

    pyenv pyenv 可以让机器安装各种不同版本的python pyenv install --list 查看可以安装的python版本 pyenv versions 查看已安装的python版本 ...

  6. 原生ajax写的上拉加载

    上拉加载的思路 1 上拉加载是要把屏幕拉到最底部的时候触发ajax事件请求数据 2.所有要获取屏幕的高度 文档的高度 和滚动的高度 下面的代码是已经做好了兼容的可以直接拿来用 Javascript: ...

  7. Linux进程作业常用命令

    从鸟哥的私房菜书里摘抄的部分,方便查阅 一.作业管理     1.直接将命令放到后台执行的&         如想将/etc 备份为/tmp/ect.tar.gz时不想等待,可以这样做:    ...

  8. 让互联网更快:新一代QUIC协议在腾讯的技术实践分享

    本文来自腾讯资深研发工程师罗成在InfoQ的技术分享. 1.前言 如果:你的 App,在不需要任何修改的情况下就能提升 15% 以上的访问速度,特别是弱网络的时候能够提升 20% 以上的访问速度. 如 ...

  9. .NET平台开源项目速览(20)Newlife.Core中简单灵活的配置文件

    记得5年前开始拼命翻读X组件的源码,特别是XCode,但对Newlife.Core 的东西了解很少,最多只是会用用,而且用到的只是九牛一毛.里面好用的东西太多了. 最近一年时间,零零散散又学了很多,也 ...

  10. Linux服务器上安装MySql数据库(默认安装,密码为空),首次使用需要修改密码

    1,在/etc/my.cnf末尾  加入skip-grant-tables,保存,跳过身份验证. 2,重启MySql,使刚才修改的配置生效. 3,终端输入mysql,然后再输入use mysql; 4 ...