1.矩阵了解

1)矩阵的维度和记法

    (先数多少行,再数多少列)

    

2)矩阵的转置

        行变成列,第一行变成第一列...矩阵的转置的转置就是原矩阵

                   即       

3)矩阵和标量的乘法

      

4)矩阵和矩阵的乘法

    

    例.[2,3]X[3,4] =[2,4]

    矩阵的乘法不支持交换律,强调顺序,左乘和右乘是不一样的。

    NXM阶与SXT阶矩阵相乘,必须满足M和S维度相同,乘法的结果是一个NXT矩阵。

5)单位矩阵

      主对角线全部为1,非主对角线都为0,则为单位矩阵。

      单位矩阵乘任何矩阵,任何矩阵都不变。

      

2.矩阵变换

1)2D变换

      ①绕坐标中心旋转a角度

        

      ②缩放矩阵

          沿坐标轴缩放

          (k分别为x轴,y轴上缩放因子)

          

          沿任意N轴缩放

          

2)3D变换

      ①绕x,y,z轴旋转a度

          

      ②缩放矩阵

          

3)变换的种类

      旋转 缩放 平移 镜像

      切边(正方形上面拉一下,变成平行四边形,称之为切边)

      投影(分为 平行投影:Unity中正交相机,对物体大小不产生变化;透视投影:近大远小效果)

      可逆(施加了一个变换,还可以撤销)

      总结分类:

          线性变换

          仿射变换:线性变换+平移。

          所有的线性变换都是仿射变换,但并不是所有的仿射变换是线性变换。

       

4)常见变换组合

          满足结合律 a*b*c = a*(b*c)

   

总结:一般可以使用矩阵转换工具进行变换。物体只需要乘一次工具矩阵即可完成变换。      

3.变换深入

   当我们使用2x2旋转过后,我们只需要旋转后的xy分量各自加上也可。但是没有一个统一的工具去解决。为了能够

把平移和其他的线性变换都组合在一起,利用矩阵这一工具去实现。我们需要把这个矩阵做一个扩展,在2d中平移需要扩展

为3x3的矩阵。

1)2D平移(3X3矩阵)

  

  最后一个分量为何不取0?

  第一次做了平移之后如果为0,又要做平移,参与第二次分量计算,因为其分量为0,都为0了。所以没有达到平移的目的。

  

2)3D平移(4X4矩阵)

  

3)3D 旋转+平移

  

4)透视投影(近大远小)

  

  注意:这边本可以比较简单的使用等角三角形原理进行计算,但是还是使用矩阵来进行计算,因为可以方便的和其他

矩阵进行组合计算。

  

  注意:这边的最后一个坐标分量的值不是1.

4.方阵

  定义:行数和列数相等。

1)二阶方阵行列式

    

2)三阶方阵行列式

    

3)4阶行列式计算 

      代数余子式

        

    从方阵中任选一行中数,用这一行中每个元素去乘每个代数余子式。

    注意计算方式,正负值取决于行列下标(1开始的)

    行列式性质:

        矩阵积的行列式等于矩阵行列式的积:|AB| =|A||B|

        矩阵转置的行列式等于原矩阵的行列式:|M的转置| =|M|

        如果矩阵的任意行或列全为0,那么他的行列式等于0

         “把矩阵的任意两行或两列进行交换”,行列式变负

        任意行或列的非零积加到另一行或列上不会改变行列式的值

4)矩阵的逆

      ①逆的定义

      

      对于一个矩阵是否有逆,如果一个方阵他的行列式为0,成为奇异矩阵,没有逆。

有逆,则他的行列式一定不为0.

      代数余子式矩阵(对矩阵中每一个元素都取代数余子式)

      

      标准伴随矩阵

       当我们得到代数余子式矩阵之后,需要把这个代数余子式矩阵进行转置,称为标准伴随矩阵。

        

      矩阵求逆      

      定义检测

          

(主对角线都为1,其他都为0)

      ②矩阵逆 性质

        

      ③正交矩阵和逆

        若方阵M是正交的,则当且仅当M与它的转置的乘积等于单位矩阵。

        M*M的转置 = I(单位矩阵),即如果发现他是正交的,则可以把他的转置当做逆来使用。

        应用:

          仅仅拥有旋转,仅仅包含镜像。都是正交的。如果要撤销一个旋转,不用去求他的逆,直接用他的

转置就可以代替逆来使用。    

3D数学 矩阵常用知识点整理的更多相关文章

  1. 3D数学 ---- 矩阵和线性变换[转载]

    http://blog.sina.com.cn/s/blog_536e0eaa0100jn7c.html 一般来说,方阵能描述任意线性变换.线性变换保留了直线和平行线,但原点没有移动.线性变换保留直线 ...

  2. Koa 框架常用知识点整理

    简介 Koa 就是一种简单好用的 Web 框架.它的特点是优雅.简洁.表达力强.自由度高.本身代码只有1000多行,所有功能都通过插件实现. 学前准备 检查Nodejs版本 打开cmd命令行窗口nod ...

  3. Flow 常用知识点整理

    Flow入门初识 Flow是facebook出品的JavaScript静态类型检查工具. 由于JavaScript是动态类型语言,它的灵活性也会造成一些代码隐患,使用Flow可以在编译期尽早发现由类型 ...

  4. JavaScript常用知识点整理——思维导图

    如图 思维导图图片链接 http://www.edrawsoft.cn/viewer/public/s/b8327462051289 有道云笔记图片链接 http://note.youdao.com/ ...

  5. 3D数学读书笔记——矩阵基础

     本系列文章由birdlove1987编写,转载请注明出处.    文章链接:http://blog.csdn.net/zhurui_idea/article/details/24975031   矩 ...

  6. 3D数学读书笔记——矩阵基础番外篇之线性变换

    本系列文章由birdlove1987编写.转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/25102425 前面有一篇文章 ...

  7. 数学:3D和矩阵

    跟紧工作需求学习,于是抽了点时间看了看用于2D3D转换的矩阵内容. 矩阵在3D数学中,可以用来描述两个坐标系间 的关系,通过定义的运算能够把一个坐标系中的向量转换到另一个坐标系中.在线性代数中,矩阵就 ...

  8. python基础全部知识点整理,超级全(20万字+)

    目录 Python编程语言简介 https://www.cnblogs.com/hany-postq473111315/p/12256134.html Python环境搭建及中文编码 https:// ...

  9. Python--matplotlib绘图可视化知识点整理

    from:https://segmentfault.com/a/1190000005104723 本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找. 强烈推荐ipython无论你 ...

随机推荐

  1. nginx配置 location及rewrite规则详解

    1. location正则写法 语法规则: location [=|~|~*|^~] /uri/ { … } =    开头表示精确匹配 ^~  开头表示uri以某个常规字符串开头,理解为匹配 url ...

  2. LeetCode_图像渲染

    题目: 有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 到 65535 之间. 给你一个坐标 (sr, sc) 表示图像渲染开始的像素值(行 ,列)和一个新的颜色值 ne ...

  3. flask完成文件上传功能

    在使用flask定义路由完成文件上传时,定义upload视图函数 from flask import Flask, render_template from werkzeug.utils import ...

  4. 在mac OX10.11.6上安装MySQL

    一.之前失败情况 官网下载dmg文件安装.源码安装,下过5.6  5.7  8.0 版本,都可以安装成功,但是在电脑设置界面无法启动,每次点启动输入密码后,均闪一下绿色然后变红色,既然不能界面启动,那 ...

  5. Windows驱动开发入门指引

       1.  前言 因工作上项目的需要,笔者需要做驱动相关的开发,之前并没有接触过相关的知识,折腾一段时间下来,功能如需实现了,也积累了一些经验和看法,所以在此做番总结. 对于驱动开发的开发指引,微软 ...

  6. PHP 7.3 我们将迎来灵活的 heredoc 和 nowdoc 句法结构

    php.net RFC 频道已经公布了 PHP 7.3 的 Heredoc 和 Nowdoc 语法更新,此次更新专注于代码可读性: Heredoc 和 Nowdoc 有非常严格的语法,有些时候这令很多 ...

  7. Nginx+Tomcat搭建高性能负载均衡集群

    一.       工具   nginx-1.8.0 apache-tomcat-6.0.33 二.    目标   实现高性能负载均衡的Tomcat集群: 三.    步骤   1.首先下载Nginx ...

  8. SQL—对数据表内容的基本操作

    数据表  students      id name sex age address 101 张汉 男 14 杭州 102 欧阳钦 男 13 杭州 103 吴昊 男 14 北京 104 钱进进 男 1 ...

  9. LeetCode Javascript实现 169. Majority Element 217. Contains Duplicate(两个对象比较是否相等时,如果都指向同一个对象,a==b才是true)350. Intersection of Two Arrays II

    169. Majority Element /** * @param {number[]} nums * @return {number} */ var majorityElement = funct ...

  10. 你不知道的JavaScript--Item9 call(),apply(),bind()与回调

    1.call(),apply(),bind()方法 JavaScript 中通过call或者apply用来代替另一个对象调用一个方法,将一个函数的对象上下文从初始的上下文改变为由 thisObj 指定 ...