最重要的一点是:Bayesian GMM为什么拟合的更好?

PRML 这段文字做了解释:

Ref: http://freemind.pluskid.org/machine-learning/deciding-the-number-of-clusterings/

链接中提到了一些其他的无监督聚类。

From: http://scikit-learn.org/stable/modules/mixture.html#variational-bayesian-gaussian-mixture

Due to its Bayesian nature, the variational algorithm needs more hyper- parameters than expectation-maximization,

the most important of these being the concentration parameter weight_concentration_prior.

  • Specifying a low value for the concentration prior will make the model put most of the weight on few components set the remaining components weights very close to zero.
  • High values of the concentration prior will allow a larger number of components to be active in the mixture.

The examples below compare Gaussian mixture models with a fixed number of components, to the variational Gaussian mixture models with a Dirichlet process prior. Here, a classical Gaussian mixture is fitted with 5 components on a dataset composed of 2 clusters.

We can see that the variational Gaussian mixture with a Dirichlet process prior is able to limit itself to only 2 components whereas the Gaussian mixture fits the data with a fixed number of components that has to be set a priori by the user. In this case the user has selected n_components=5 which does not match the true generative distribution of this toy dataset. Note that with very little observations, the variational Gaussian mixture models with a Dirichlet process prior can take a conservative stand, and fit only one component.

Dirichlet distribution 具有自动的特征选取的作用,找出起主要作用的components。

5 for GMM
[ 0.1258077 0.23638361 0.23330578 0.26361639 0.14088652]
5 for Bayesian GMM
[ 0.001019 0.00101796 0.49948856 0.47955123 0.01892325]

问题来了:

为什么dirichlet会让三个的权重偏小,而GMM却没有,难道是收敛速度不同?

应该跟速度没有关系。加了先验后,后验变为了dirichlet,那么参数的估计过程中便具备了dirichlet的良好性质。

原始数据

Our data set will be the classic Old Faithful dataset.

plt.scatter(data['eruptions'], data['waiting'], alpha=0.5);
plt.xlabel('eruptions');
plt.ylabel('waiting');

如何拟合?

from sklearn.mixture import BayesianGaussianMixture

mixture_model = BayesianGaussianMixture(
n_components=10,
random_state=5, # control the pseudo-random initialization
weight_concentration_prior_type='dirichlet_distribution',
weight_concentration_prior=1.0, # parameter of the Dirichlet component prior
max_iter=200, # choose this to be big in case it takes a long time to fit
)
mixture_model.fit(data);

Ref: http://scikit-learn.org/stable/auto_examples/mixture/plot_concentration_prior.html

可直接调用该程式:

plot_ellipses(ax1, model.weights_, model.means_, model.covariances_)

def plot_ellipses(ax, weights, means, covars):
"""
Given a list of mixture component weights, means, and covariances,
plot ellipses to show the orientation and scale of the Gaussian mixture dispersal.
"""
for n in range(means.shape[0]):
eig_vals, eig_vecs = (covars[n])
unit_eig_vec = eig_vecs[0] / np.linalg.norm(eig_vecs[0])
angle = np.arctan2(unit_eig_vec[1], unit_eig_vec[0])
# Ellipse needs degrees
angle = 180 * angle / np.pi
# eigenvector normalization
eig_vals = 2 * np.sqrt(2) * np.sqrt(eig_vals)
ell = mpl.patches.Ellipse(
means[n], eig_vals[0], eig_vals[1],
180 + angle,
edgecolor=None,)
ell2 = mpl.patches.Ellipse(
means[n], eig_vals[0], eig_vals[1],
180 + angle,
edgecolor='black',
fill=False,
linewidth=1,)
ell.set_clip_box(ax.bbox)
ell2.set_clip_box(ax.bbox)
ell.set_alpha(weights[n])
ell.set_facecolor('#56B4E9')
ax.add_artist(ell)
ax.add_artist(ell2)
plot_results(
mixture_model,
data['eruptions'], data['waiting'],
'weight_concentration_prior={}'.format(1.0)) def plot_results(model, x, y, title, plot_title=False): fig, ax = plt.subplots(3, 1, sharex=False)
# 上面是ax没用,以下重新定义了ax1 ax2
gs = gridspec.GridSpec(3, 1)  # 自定义子图位置
ax1 = plt.subplot(gs[0:2, 0])
# 以下四行是固定套路
ax1.set_title(title)
ax1.scatter(x, y, s=5, marker='o', alpha=0.8)
ax1.set_xticks(())
ax1.set_yticks(())
n_components = model.get_params()['n_components'] plot_ellipses(ax1, model.weights_, model.means_, model.covariances_)

# ax1:画椭圆
# ax2:画权重
ax2 = plt.subplot(gs[2, 0])
ax2.get_xaxis().set_tick_params(direction='out')
ax2.yaxis.grid(True, alpha=0.7)
for k, w in enumerate(model.weights_):
ax2.bar(k, w, width=0.9, color='#56B4E9', zorder=3,
align='center', edgecolor='black')
ax2.text(k, w + 0.007, "%.1f%%" % (w * 100.),
horizontalalignment='center')
ax2.set_xlim(-.6, n_components - .4)
ax2.set_ylim(0., 1.1)
ax2.tick_params(axis='y', which='both', left='off',
right='off', labelleft='off')
ax2.tick_params(axis='x', which='both', top='off') if plot_title:
ax1.set_ylabel('Estimated Mixtures')
ax2.set_ylabel('Weight of each component')

查看拟合过程:

lower_bounds = []
mixture_model = BayesianGaussianMixture(
n_components =10,
covariance_type ='full',
max_iter =1,
random_state =2,
weight_concentration_prior_type ='dirichlet_distribution',
warm_start =True,
)
# 设置model.fit为只递归一次
for i in range(200):
mixture_model.fit(data)
if mixture_model.converged_: break
lower_bounds.append(mixture_model.lower_bound_)
if i%5==0 and i<60:
plt.figure();
plot_results(
mixture_model,
data['eruptions'], data['waiting'],
'EM step={}, lower_bound={}'.format(
i, mixture_model.lower_bound_)
); plt.figure();
plt.plot(lower_bounds);
plt.gca().set_xlabel('step')
plt.gca().set_ylabel('lower bound')

Lower bound 逐渐增加。

不同初始,效果对比:

for seed in range(6,11):
lower_bounds = []
mixture_model = BayesianGaussianMixture(
n_components=10,
covariance_type='full',
max_iter=1,
random_state=seed,
weight_concentration_prior_type='dirichlet_distribution',
warm_start=True,
)
for i in range(200):
mixture_model.fit(data)
if mixture_model.converged_: break
lower_bounds.append(mixture_model.lower_bound_)
plt.plot(lower_bounds);
plt.gca().set_xlabel('step')
plt.gca().set_ylabel('lower bound');

Result: 

[Scikit-learn] 2.1 Clustering - Variational Bayesian Gaussian Mixture的更多相关文章

  1. 基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG)

    基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedd ...

  2. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  3. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  4. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  5. [Scikit-learn] 2.1 Clustering - Gaussian mixture models & EM

    原理请观良心视频:机器学习课程 Expectation Maximisation Expectation-maximization is a well-founded statistical algo ...

  6. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  7. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  8. 漫谈 Clustering (3): Gaussian Mixture Model

    上一次我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 GMM ...

  9. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

随机推荐

  1. java 如何判断操作系统是Linux还是Windows

    String os = System.getProperty("os.name"); if(os.toLowerCase().startsWith("win") ...

  2. Javascript跳转页面和打开新窗口等方法

    1.在原来的窗体中直接跳转用onClick="window.location.href='你所要跳转的页面';" 2.在新窗体中打开页面用:onclick="window ...

  3. Hibernate的Configuration对象的configure()方法

    Configuration configuration=new Configuration(); configuration.configure(); 在Hibernate底层实现configure( ...

  4. python 脚本开发实战-当当亚马逊图书采集器转淘宝数据包

    开发环境python2.7.9 os:win-xp exe打包工具pyinstaller 界面tkinter ============================================= ...

  5. Java钉钉开发_01_开发前的准备

    源码已上传GitHub:传送门 一.准备事项 1.1  一个能在公网上访问的项目: 参见:Java微信开发_02_本地服务器映射外网 1.2  一个钉钉账号 去注册 1.3 创建一个应用 登录钉钉后台 ...

  6. LPCTSTR LPCWSTR LPCSTR 含义

    #ifdef UNICODE#define LPCTSTR LPCWSTR#else#define LPCTSTR LPCSTR#endif      LPCTSTR A 32-bit pointer ...

  7. Nim or not Nim? hdu3032 SG值打表找规律

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  8. 怎样学好哲学(lucas+费马小定理)

    怎样学习哲学 时间限制: 1 Sec  内存限制: 128 MB提交: 97  解决: 27[提交][状态][讨论版] 题目描述 OI大师抖儿在夺得银牌之后,顺利保送pku.这一天,抖儿问长者:&qu ...

  9. Online Bayesian Probit Regression介绍之Factor Graph

    下面就开始讲讲概率图中的Factor Graph.概率图博大精深,非我等鼠辈能够完全掌握,我只是通过研究一些通用的模型,对概率图了解了一点皮毛.其实我只是从概率这头神兽身上盲人摸象地抓掉几根毛,我打算 ...

  10. IE9总是弹出“ICBC Anti-Phishing class” 加载项是否要启用还是不启用的提示

    解决方法: 后来在通过查询,发现 IcbcDaemon.exe 进程是写在系统服务中的,我们可以在系统的服务管理工具中停止该服务: 1.单击开始,在搜索框中输入 services.msc ,按下回车键 ...