poj 3648 2-SAT建图+topsort输出结果
其实2-SAT类型题目的类型比较明确,基本模型差不多是对于n组对称的点,通过给出的限制条件建图连边,然后通过缩点和判断冲突来解决问题。要注意的是在topsort输出结果的时候,缩点后建图需要反向连边,然后输出就可以了。2-sat题型差不多。
题意:新娘新郎分别坐在长桌两边,n-1队夫妇来参加婚礼,要求:夫妇不能坐在同一边,通奸关系不能坐在同一边。输出新娘对面的序列。
思路:对称关系:夫妇,限制条件:通奸关系。基础2-sat问题,缩点找冲突topsort输出结果一气呵成。。。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MAXN 2002
int instack[MAXN],stack[MAXN],fa[MAXN],vis[MAXN],head[MAXN],first[MAXN];
int dfn[MAXN],low[MAXN],in[MAXN],ans[MAXN],que[MAXN];
int a[MAXN][2],b[MAXN][2],flag[MAXN],cf[MAXN],col[MAXN];
int n,m,tot,scnt,time,tt,top,index; struct Edge
{
int v,next;
}edge[MAXN*MAXN],e[MAXN*MAXN]; void addedge(int u,int v)
{
edge[tot].v=v;
edge[tot].next=head[u];
head[u]=tot++;
}
void adde(int u,int v)
{
e[tt].v=v;
e[tt].next=first[u];
first[u]=tt++;
}
void tarjan(int u)
{
instack[u]=1;
stack[top++]=u;
dfn[u]=low[u]=++index;
int v;
for(int i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].v;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
{
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u])
{
scnt++;
do
{
v=stack[--top];
instack[v]=0;
fa[v]=scnt;
}while(v!=u);
}
}
void build()
{
for(int i=0;i<m;i++) //2*n的点
{
int t1,t2;char c,v;
scanf("%d%c",&t1,&c);
scanf("%d%c",&t2,&v);
if(c=='h'&&v=='h')
{
addedge(t1+n,t2);
addedge(t2+n,t1);
}
else if(c=='h'&&v=='w')
{
addedge(t1+n,t2+n);
addedge(t2,t1);
}
else if(c=='w'&&v=='h')
{
addedge(t1,t2);
addedge(t2+n,t1+n);
}
else if(c=='w'&&v=='w')
{
addedge(t1,t2+n);
addedge(t2,t1+n);
}
}
addedge(0,n);
}
void solve()
{
memset(dfn,0,sizeof(dfn));
memset(instack,0,sizeof(instack));
index=0;scnt=0;top=0;
for(int i=0;i<2*n;i++)
{
if(!dfn[i])
tarjan(i);
}
}
int check()
{
for(int i=0;i<n;i++)
{
if(fa[i]==fa[i+n]) //冲突
{
return 0;
}
cf[fa[i]]=fa[i+n];
cf[fa[i+n]]=fa[i];
}
return 1;
}
void topsort()
{
int head=1,tail=1;
for(int i=1;i<=scnt;i++)
{
if(in[i]==0)
{
que[tail++]=i;
}
}
int v;
while(tail>head)
{
int u=que[head];
head++;
if(col[u]==0) //对于未着色的点x,将x染成红色1,同时将与x矛盾的点cf[x]染成蓝色-1。
{
col[u]=1;
col[cf[u]]=-1;
}
for(int i=first[u];i!=-1;i=e[i].next)
{
v=e[i].v;
if(--in[v]==0)
{
que[tail++]=v;
}
}
}
memset(ans,0,sizeof(ans));
for(int i=0;i<n;i++)
{
if(col[fa[i]]==1)
{
ans[i]=1;
}
}
for(int i=1;i<n;i++)
{
if(ans[i])
printf("%dh ",i);
else
printf("%dw ",i);
}
printf("\n");
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF,(n||m))
{
memset(head,-1,sizeof(head));tot=0;
memset(first,-1,sizeof(first));tt=0; build();
solve();
if(!check())printf("bad luck\n");
else
{
memset(in,0,sizeof(in));
memset(col,0,sizeof(col));
for(int i=0;i<2*n;i++)
{
int v;
for(int j=head[i];j!=-1;j=edge[j].next)
{
v=edge[j].v;
if(fa[i]!=fa[v])
{
adde(fa[v],fa[i]);
in[fa[i]]++;
}
}
}
topsort();
}
}
return 0;
}
poj 3648 2-SAT建图+topsort输出结果的更多相关文章
- poj 3281 最大流+建图
很巧妙的思想 转自:http://www.cnblogs.com/kuangbin/archive/2012/08/21/2649850.html 本题能够想到用最大流做,那真的是太绝了.建模的方法很 ...
- POJ 1637 Sightseeing tour 建图+网络流
题意: 给定一个混合图,所谓混合图就是图中既有单向边也有双向边,现在求这样的图是否存在欧拉回路. 分析: 存在欧拉回路的有向图,必须满足[入度==出度],现在,有些边已经被定向,所以我们直接记录度数即 ...
- POJ 1149 网络流 合并建图
这个题目我敲了一个简单的EK,这不是难点 难点在于建图,按题目的要求 每个猪圈和顾客都建点的话,那也太多了...我看了Edelweiss里面的缩点方法才建好的图,哎,惭愧啊 实际那些猪圈根本不需要单独 ...
- POJ - 1149 PIGS (建图思维+最大流)
(点击查看原题) 题目分析 (以下均为 Edelweiss 大佬的思路,博主承认自己写不了这么好,但是学习的心促使我记录下这个好题的写法,所以代码是我写的) [题目大意] 有 M 个猪圈,每个猪圈里初 ...
- poj 3281 最大流建图
题目链接:http://poj.org/problem?id=3281 #include <cstdio> #include <cmath> #include <algo ...
- [poj 3281]最大流+建图很巧妙
题目链接:http://poj.org/problem?id=3281 看了kuangbin大佬的思路,还用着kuangbin板子orz http://www.cnblogs.com/kuangb ...
- POJ 1161 Walls ( Floyd && 建图 )
题意 : 在某国,城市之间建起了长城,每一条长城连接两座城市.每条长城互不相交.因此,从一个区域到另一个区域,需要经过一些城镇或者穿过一些长城.任意两个城市A和B之间最多只有一条长城,一端在A城市, ...
- POJ 2226 缩点建图+二分图最大匹配
这个最小覆盖但不同于 POJ 3041,只有横或者竖方向连通的点能用一块板子覆盖,非连续的,就要用多块 所以用类似并查集方法,分别横向与竖向缩点,有交集的地方就连通,再走一遍最大匹配即可 一开始还有点 ...
- POJ 2374 线段树建图+Dijkstra
题意: 思路: 线段树+Dijkstra(要堆优化的) 线段树要支持打标记 一个栅栏 拆成两个点 :左和右 新加一个栅栏的时候 看看左端点有没有被覆盖过 如果有的话 就分别从覆盖的那条线段的左右向当前 ...
随机推荐
- Scrapy提取多个标签的text
对于要提取嵌套标签所有内容的情况, 使用string或//text(), 注意两者区别 >>> from scrapy import Selector >>> &g ...
- [Tyvj模拟赛]运
运 题目 [问题背景]zhx 和妹子们玩数数游戏. [问题描述] 仅包含4或7的数被称为幸运数.一个序列的子序列被定义为从序列中删去若干个数, 剩下的数组成的新序列.两个子序列被定义为不同的当且仅当其 ...
- 图解虚数 - A Visual, Intuitive Gudie to Imaginary Numbers
这是一篇发表在 betterexplained 上的文章.它通过类比.图解的方式简明地介绍了虚数的意义. 作者:Kalid 原文:A Visual, Intuitive Gudie to Imagin ...
- pwntools使用简介2
大致框架 官网的一个简单样例 from pwn import * context(arch = 'i386', os = 'linux') r = remote() # EXPLOIT CODE GO ...
- PhantomJS 与python的结合
待完善 一.简介 PhantomJS是一个基于webkit的JavaScript API.它使用QtWebKit作为它核心浏览器的功能,使用webkit来编译解释执行JavaScript代码.任何你可 ...
- HTML5.1 推荐中 1.5.3. Extensibility 段落翻译
可拓展性 HTML有广泛的可扩展性机制,可用于以安全的方式添加语义: 作者可以使用class属性来扩展元素,有效地创建自己的元素,同时使用最适用的现有的"real"HTML元素,这 ...
- SpringMVC注解@RequestMapping之produces属性导致的406错误
废话不多说,各位,直接看图说话,敢吗?这个问题网上解决的办法写的狠是粗糙,甚至说这次我干掉它完全是靠巧合,但是也不否认网上针对406错误给出的解决方式,可能是多种情况下出现的406吧?我这次的流程就是 ...
- Fiddler设置代理(PC和Android)
Fiddler设置 打开Fiddler,进入Tools--->Fiddler Options,勾选以下信息: OK,就配置完成了. PC端设置: 以火狐为例,打开选项--->高级 ...
- APP应用测试技巧
分页数据 测试分页数据,必须要满足一页数据,根据APP设置的分页数据准备一些测试数据. 满足一页数据的时候上下滑动瀑布流时, 页面数据是否会正常展示: 是否会出现第二页请求不到数据: 是否会出现重复加 ...
- java参数传递
关于方法的参数传递,java中方法的参数传递均为值传递,根据传递的类型以及方法中对参数的处理可以分为2类: 1.传递参数为基本数据类型,因为是值传递,所以方法运行结束后对传递参数的值无影响. 2.传递 ...